Abstract Sodium (Na) is an essential element for all animals, but not for plants. Soil Na supplies vary geographically. Animals that primarily consume plants thus have the potential to be Na limited and plants that uptake Na may be subject to higher rates of herbivory, but their high Na content also may attract beneficial partners such as pollinators and seed dispersers.To test for the effects of Na biogeochemistry on herbivory, we conducted distributed Na press experiments (monthly Na application across the growing season) in four North American grasslands.Na addition increased soil and plant Na concentrations at all sites. Grasses in Na addition plots had significantly higher herbivore damage by leaf miners and fungal pathogens than those in control plots. Forbs with higher foliar Na concentrations had significantly more chewing insect herbivore and fungal damage.While no pattern was evident across all species, several forb species had higher Na concentrations in inflorescences compared to leaves, suggesting they may allocate Na to attract beneficial partners.The uptake of Na by plants, and animal responses, has implications for the salinification in the Anthropocene. Increased use of road salt, irrigation with saline groundwater, rising sea levels and increasing temperatures and evapotranspiration rates with climate change can all increase inputs of Na into terrestrial ecosystems.Our results suggest increasing terrestrial Na availability will benefit insect herbivores and plant fungal pathogens. A freePlain Language Summarycan be found within the Supporting Information of this article.
more »
« less
This content will become publicly available on November 1, 2025
Planning for the future: Grasslands, herbivores, and nature‐based solutions
Abstract Global interest and investment in nature‐based solutions (NbS) are rapidly increasing because of the potential of this approach to concurrently counter biodiversity loss, provide cost‐effective measures for climate change adaptations, and maintain natural processes that underpin human health and wellbeing.Recognition is growing that grasslands in many regions will protect carbon stores more effectively than forests in the warmer, drier, more fire‐prone conditions of the future while also serving as hotspots for biodiversity. Yet grasslands have received less attention for their NbS potential. Despite the wide‐ranging goals of this approach, many investments in nature‐based solutions also have focused narrowly on using plants to meet climate pledges, often without considering plant interactions with herbivores and the abiotic environment that jointly control ecosystem functioning and underpin the success of nature‐based solutions.Here, we review the roles that large and small vertebrate and invertebrate herbivores play in the ability of the world's grasslands to provide nature‐based solutions, with a focus on wild herbivore impacts on biodiversity and carbon storage.Synthesis. Planning for nature‐based solutions with a holistic, ecologically informed view that includes the role of herbivores and their interaction with plants and the environment will allow NbS investments to more likely achieve successful, sustainable outcomes.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10556775
- Publisher / Repository:
- John Wiley & Sons, Ltd
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 112
- Issue:
- 11
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- 2442 to 2450
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate models predict at least another 1.5°C warming in the next 75 years. This warming drives increased atmospheric drying and a global increase in the severity and duration of ecological drought. Vegetation has the capacity to reduce microclimate temperatures and atmospheric aridity.All species of plants create shade, move water, evapotranspire, humidify the air around them, and affect the temperature and vapour pressure deficit of the environment. Vegetation can thus act as a nature‐based solution to warming and atmospheric drying.These microclimate modifications likely depend on the traits, functional groups and diversity of the plant community. Vegetative feedbacks on microclimate are strong enough to buffer some plants against the negative impacts of warming and drying (e.g. facilitation).Synthesis: Here we present, for the first time, a trait‐based framework that can be applied across study systems for assessing microclimate temperature and humidity under vegetation. This framework includes multiple new hypotheses for future work in this area. We emphasize that a systematic examination of trait–microclimate relationships will enable us to use vegetation as a nature‐based solution to warming and atmospheric drying in a changing climate.more » « less
-
Abstract Root production influences carbon and nutrient cycles and subsidizes soil biodiversity. However, the long‐term dynamics and drivers of belowground production are poorly understood for most ecosystems. In drylands, fire, eutrophication, and precipitation regimes could affect not only root production but also how roots track interannual variability in climate.We manipulated the intra‐annual precipitation regime, soil nitrogen, and fire in four common Chihuahuan Desert ecosystem types (three grasslands and one shrubland) in New Mexico, USA, where the 100‐year record indicates both long‐term drying and increasing interannual variability in aridity. First, we evaluated how root production tracked aridity over 10–17 years using climate sensitivity functions, which quantify long‐term, nonlinear relationships between biological processes and climate. Next, we determined the degree to which perturbations by fire, nitrogen addition or intra‐annual rainfall altered the sensitivity of root production to both mean and interannual variability in aridity.All ecosystems had nonlinear climate sensitivities that predicted declines in production with increases in the interannual variance of aridity. However, root production was the most sensitive to aridity in Chihuahuan Desert shrubland, with reduced production under drier and more variable aridity.Among the perturbations, only fire altered the sensitivity of root production to aridity. Root production was more than twice as sensitive to declines with aridity following prescribed fire than in unburned conditions. Neither the intra‐annual seasonal rainfall regime nor chronic nitrogen fertilization altered the sensitivity of roots to aridity.Synthesis. Our results yield new insight into how dryland plant roots respond to climate change. Our comparison of dryland ecosystems of the northern Chihuahuan Desert predicted that root production in shrublands would be more sensitive to future climates that are drier and more variable than root production in dry grasslands. Field manipulations revealed that fire could amplify the climate sensitivity of dry grassland root production, but in contrast, the climate sensitivity of root production was largely resistant to changes in the seasonal rainfall regime or increased soil fertilization.more » « less
-
Soil nutrients cause threefold increase in pathogen and herbivore impacts on grassland plant biomassAbstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.more » « less
-
Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity.more » « less
An official website of the United States government
