Septic shock is a life-threatening condition in which timely treatment substantially reduces mortality. Reliable identification of patients with sepsis who are at elevated risk of developing septic shock therefore has the potential to save lives by opening an early window of intervention. We hypothesize the existence of a novel clinical state of sepsis referred to as the “pre-shock” state, and that patients with sepsis who enter this state are highly likely to develop septic shock at some future time. We apply three different machine learning techniques to the electronic health record data of 15,930 patients in the MIMIC-III database to test this hypothesis. This novel paradigm yields improved performance in identifying patients with sepsis who will progress to septic shock, as defined by Sepsis- 3 criteria, with the best method achieving a 0.93 area under the receiver operating curve, 88% sensitivity, 84% specificity, and median early warning time of 7 hours. Additionally, we introduce the notion of patient-specific positive predictive value, assigning confidence to individual predictions, and achieving values as high as 91%. This study demonstrates that early prediction of impending septic shock, and thus early intervention, is possible many hours in advance.
This content will become publicly available on October 9, 2025
- Award ID(s):
- 1954532
- PAR ID:
- 10556776
- Publisher / Repository:
- Elsevier B.V.
- Date Published:
- Journal Name:
- Intelligencebased medicine
- Edition / Version:
- 10
- ISSN:
- 2666-5212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
BACKGROUND Timely interventions, such as antibiotics and intravenous fluids, have been associated with reduced mortality in patients with sepsis. Artificial intelligence (AI) models that accurately predict risk of sepsis onset could speed the delivery of these interventions. Although sepsis models generally aim to predict its onset, clinicians might recognize and treat sepsis before the sepsis definition is met. Predictions occurring after sepsis is clinically recognized (i.e., after treatment begins) may be of limited utility. Researchers have not previously investigated the accuracy of sepsis risk predictions that are made before treatment begins. Thus, we evaluate the discriminative performance of AI sepsis predictions made throughout a hospitalization relative to the time of treatment. METHODS We used a large retrospective inpatient cohort from the University of Michigan’s academic medical center (2018–2020) to evaluate the Epic sepsis model (ESM). The ability of the model to predict sepsis, both before sepsis criteria are met and before indications of treatment plans for sepsis, was evaluated in terms of the area under the receiver operating characteristic curve (AUROC). Indicators of a treatment plan were identified through electronic data capture and included the receipt of antibiotics, fluids, blood culture, and/or lactate measurement. The definition of sepsis was a composite of the Centers for Disease Control and Prevention’s surveillance criteria and the severe sepsis and septic shock management bundle definition. RESULTS The study included 77,582 hospitalizations. Sepsis occurred in 3766 hospitalizations (4.9%). ESM achieved an AUROC of 0.62 (95% confidence interval [CI], 0.61 to 0.63) when including predictions before sepsis criteria were met and in some cases, after clinical recognition. When excluding predictions after clinical recognition, the AUROC dropped to 0.47 (95% CI, 0.46 to 0.48). CONCLUSIONS We evaluate a sepsis risk prediction model to measure its ability to predict sepsis before clinical recognition. Our work has important implications for future work in model development and evaluation, with the goal of maximizing the clinical utility of these models. (Funded by Cisco Research and others.)more » « less
-
Guillot, Gilles (Ed.)
Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,
without requiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques.Software :https://github.com/vanderschaarlab/AutoPrognosis -
null (Ed.)Objective: The objective of the study is to build models for early prediction of risk for developing multiple organ dysfunction (MOD) in pediatric intensive care unit (PICU) patients. Design: The design of the study is a retrospective observational cohort study. Setting: The setting of the study is at a single academic PICU at the Johns Hopkins Hospital, Baltimore, MD. Patients: The patients included in the study were <18 years of age admitted to the PICU between July 2014 and October 2015. Measurements and main results: Organ dysfunction labels were generated every minute from preceding 24-h time windows using the International Pediatric Sepsis Consensus Conference (IPSCC) and Proulx et al. MOD criteria. Early MOD prediction models were built using four machine learning methods: random forest, XGBoost, GLMBoost, and Lasso-GLM. An optimal threshold learned from training data was used to detect high-risk alert events (HRAs). The early prediction models from all methods achieved an area under the receiver operating characteristics curve ≥0.91 for both IPSCC and Proulx criteria. The best performance in terms of maximum F1-score was achieved with random forest (sensitivity: 0.72, positive predictive value: 0.70, F1-score: 0.71) and XGBoost (sensitivity: 0.8, positive predictive value: 0.81, F1-score: 0.81) for IPSCC and Proulx criteria, respectively. The median early warning time was 22.7 h for random forest and 37 h for XGBoost models for IPSCC and Proulx criteria, respectively. Applying spectral clustering on risk-score trajectories over 24 h following early warning provided a high-risk group with ≥0.93 positive predictive value. Conclusions: Early predictions from risk-based patient monitoring could provide more than 22 h of lead time for MOD onset, with ≥0.93 positive predictive value for a high-risk group identified pre-MOD.more » « less
-
Abstract Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass.
This article is categorized under:
Diagnostic Tools > Biosensing