skip to main content


Search for: All records

Award ID contains: 1954532

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Road authorities worldwide can leverage the advances in vehicle technology by continuously monitoring their roads’ conditions to minimize road maintenance costs. The existing methods for carrying out road condition surveys involve manual observations using standard survey forms, performed by qualified personnel. These methods are expensive, time-consuming, infrequent, and can hardly provide real-time information. Some automated approaches also exist but are very expensive since they require special vehicles equipped with computing devices and sensors for data collection and processing. This research aims to leverage the advances in vehicle technology in providing a cheap and real-time approach to carry out road condition monitoring (RCM). This study developed a deep learning model using the You Only Look Once, Version 5 (YOLOv5) algorithm that was trained to capture and categorize flexible pavement distresses (FPD) and reached 95% precision, 93.4% recall, and 97.2% mean Average Precision. Using vehicle built-in cameras and GPS sensors, these distresses were detected, images were captured, and locations were recorded. This was validated on campus roads and parking lots using a car featured with a built-in camera and GPS. The vehicles’ built-in technologies provided a more cost-effective and efficient road condition monitoring approach that could also provide real-time road conditions.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available August 22, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Recent technological developments have attracted the use of machine learning technologies and sensors in various pavement maintenance and rehabilitation studies. To avoid excessive road damages, which cause high road maintenance costs, reduced mobility, vehicle damages, and safety concerns, the periodic maintenance of roads is necessary. As part of maintenance works, road pavement conditions should be monitored continuously. This monitoring is possible using modern distress detection methods that are simple to use, comparatively cheap, less labor-intensive, faster, safer, and able to provide data on a real-time basis. This paper proposed and developed two models: computer vision and sensor-based. The computer vision model was developed using the You Only Look Once (YOLOv5) algorithm for detecting and classifying pavement distresses into nine classes. The sensor-based model combined eight Controller Area Network (CAN) bus sensors available in most new vehicles to predict pavement distress. This research employed an extreme gradient boosting model (XGBoost) to train the sensor-based model. The results showed that the model achieved 98.42% and 97.99% area under the curve (AUC) metrics for training and validation datasets, respectively. The computer vision model attained an accuracy of 81.28% and an F1-score of 76.40%, which agree with past studies. The results indicated that both computer vision and sensor-based models proved highly efficient in predicting pavement distress and can be used to complement each other. Overall, computer vision and sensor-based tools provide cheap and practical road condition monitoring compared to traditional manual instruments. 
    more » « less
  7. An epidemic disease caused by coronavirus has spread all over the world with a strong contagion rate. We present simulations of epidemic models constructed using real data to give a clear perspective and confirmation on the effect of quarantine on the evolution of the infection and the number of infected, recovered, and dead because of this epidemic in South Carolina in a time window (December 1, 2020, to June 1, 2021) when the epidemic was relatively strong. We use CDC data for infected and dead populations covering the period December 1, 2020, to June 1, 2021 in South Carolina to develop models and do simulations. There were no data available for recovered populations in this period. Part of our goal is to estimate the number of recovered for the entire period. The models and results are consistent with the data. The infection and recovery increasing in South Carolina do not show improvement in this period. The number of dead people in this period tended to increase although by small amount. Optimal control methodologies are considered where transmission, recovery, relapse of immunity and death rates are considered as decision variables in minimizing the difference between the real and computed COVID-19 infection and dead data. Effect of quarantine as intervention strategy is also considered as it is critical issue. What we want to show is what could have been the outcome if quarantine had been implemented from the very beginning. The progress of an infection in general is related not only to the present states, but also to its historical states. To account for the effect of past evolution we add fractional differential equations models. 
    more » « less