skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Production and Reactions of Organic Molecules in Clouds of Venus
For half a century, the possibility of organic molecules in sulfuric acid droplets in the clouds above Venus has been largely discounted. Here, we report the first results from an experimental exploration of this possibility, of primary interest to astronomers but also uncovering reactions that are remarkable to organic chemistry. This work provides a detailed mechanism of how small organic molecules might be generated in the sulfuric acid (H2SO4) aerosol droplets that form the clouds above Venus, starting from formaldehyde (HCHO), a simple one carbon species produced photochemically in the gas phase. Laboratory 13C and 1H nuclear magnetic resonance studies detail processes by which dissolved HCHO reacts with dissolved carbon monoxide (CO) to produce a two-carbon organic species, glycolic acid (HOCH2COOH). They show that glycolic acid is surprisingly stable, for days or longer, depending on temperature, in concentrated H2SO4. However, glycolic acid slowly reacts further to give higher molecular weight organic materials, including colored and fluorescent species. These may contribute to the UV and visible light astronomy of Venus, and are guiding the design of an autofluorescence nephelometer scheduled to fly on a Rocket Lab mission to Venus in 2025.  more » « less
Award ID(s):
2123995
PAR ID:
10556862
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACS Earth and Space Chemistry
Date Published:
Journal Name:
ACS Earth and Space Chemistry
Volume:
8
Issue:
1
ISSN:
2472-3452
Page Range / eLocation ID:
89 to 98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January–March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations. 
    more » « less
  2. Abstract Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer. 
    more » « less
  3. When fractionating corn cobs using the acetosolv process, the type of acid catalyst and their concentrations significantly affect the structure of the resulting lignin fraction as well as its catalytic deconstruction to aromatic monomers. Gel permeation chromatography (GPC) results show that the average molecular weight (~55,750 g/mol) of the sulfuric acid-pretreated corn cob lignin (H2SO4-CCL) is much greater than that (~39,400 g/mol) of hydrochloric acid-pretreated corn cob lignin (HCl-CCL) at similar acid concentrations, suggesting increased condensation reactions when using sulfuric acid. Further, a significant amount of bound sulfur content (~2900 ppm) was measured in H2SO4-CCL. This sulfur presence poisons the Pd/C catalyst used in the downstream catalytic conversion of the lignin in methanol to form monolignols and derivatives thereof. X-ray photoelectron spectroscopy (XPS) results reveal that both sulfide and sulfate groups are formed with the surface Pd sites, rendering them inactive and amenable to possible leaching. Elemental mapping of spent catalysts using scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF)/energy dispersive x-ray (EDX) technique corroborate overlapping presence of Pd, S and O in the micrographs. 2D 1H/13C HSQC nuclear magnetic resonance (NMR) spectroscopy reveals that the use of H2SO4 preserves aryl ether linkages only at low concentrations. In contrast, the use of HCl in the acetosolv process preserves such linkages even at high concentrations while also mitigating sulfur poisoning of the Pd/C catalyst. Consequently, the yield of aromatic monomers during catalytic fractionation of HCl-CCL was doubled compared to H2SO4-CCL at identical operating conditions. 
    more » « less
  4. Abstract The formation of complex organic molecules by simulated secondary electrons generated in the track of galactic cosmic rays was investigated in interstellar ice analogs composed of methanol and carbon dioxide. The processed ices were subjected to temperature-programmed desorption to mimic the transition of a cold molecular cloud to a warmer star-forming region. Reaction products were detected as they sublime using photoionization reflectron time-of-flight mass spectrometry. By employing isotopic labeling, tunable photoionization and computed adiabatic ionization energies isomers of C2H4O3were investigated. Product molecules carbonic acid monomethyl ester (CH3OCOOH) and glycolic acid (HOCH2COOH) were identified. The abundance of the reactants detected in analog interstellar ices and the low irradiation dose necessary to form these products indicates that these molecules are exemplary candidates for interstellar detection. Molecules sharing a tautomeric relationship with glycolic acid, dihydroxyacetaldehyde ((OH)2CCHO), and the enol ethenetriol (HOCHC(OH)2), were not found to form despite ices being subjected to conditions that have successfully produced tautomerization in other ice analog systems. 
    more » « less
  5. Abstract. Size distributions of particles formed from sulfuric acid(H2SO4) and water vapor in a photolytic flow reactor (PhoFR) weremeasured with a nanoparticle mobility sizing system. Experiments with addedammonia and dimethylamine were also performed. H2SO4(g) wassynthesized from HONO, sulfur dioxide and water vapor, initiating OHoxidation by HONO photolysis. Experiments were performed at 296 K over arange of sulfuric acid production levels and for 16 % to 82 % relativehumidity. Measured distributions generally had a large-particle mode thatwas roughly lognormal; mean diameters ranged from 3 to 12 nm and widths(lnσ) were ∼0.3. Particle formation conditions werestable over many months. Addition of single-digit pmol mol−1 mixing ratios ofdimethylamine led to very large increases in particle number density.Particles produced with ammonia, even at 2000 pmol mol−1, showed that NH3is a much less effective nucleator than dimethylamine. A two-dimensionalsimulation of particle formation in PhoFR is also presented that starts withgas-phase photolytic production of H2SO4, followed by kineticformation of molecular clusters and their decomposition, which is determined by theirthermodynamics. Comparisons with model predictions of the experimentalresult's dependency on HONO and water vapor concentrations yieldphenomenological cluster thermodynamics and help delineate the effects ofpotential contaminants. The added-base simulations and experimental resultsprovide support for previously published dimethylamine–H2SO4cluster thermodynamics and provide a phenomenological set ofammonia–sulfuric acid thermodynamics. 
    more » « less