Abstract Preferential flow is ubiquitous in soils, and it affects water infiltration, runoff, and contaminant transport. Undisturbed soil lysimeters (n = 10; 900 cm2) were collected from an agricultural field to quantify the effect of climate, soil moisture, connectivity, and agricultural practices on water transport through the shallow vadose zone. A series of 10 rainfall simulations was conducted on each lysimeter (n = 100 events) and data were analysed within a framework of five case studies where we assessed the impact of rainfall intensity (n = 30 events), soil moisture (n = 28), and tillage (n = 21). Three lysimeters that had near‐zero flow initially were modified to investigate dynamics of direct surface connectivity through an artificial macropore in which we assessed the impacts of soil moisture (n = 12) and subsequent disruption via tillage (n = 9). Stable water isotopes were used to separate leachate into event (Qe) and pre‐event water (Qpe). Results showed that event water transport in leachate was not affected by rainfall intensity (Qe/Q = 49% ± 21% to 50% ± 24%); however, event water decreased from 65% ± 5% to 23% ± 28% with increasing soil moisture. Lysimeters with artificial macropores resulted in leachate that was nearly all event water (85% ± 12% to 92% ± 4%) irrespective of soil moisture. Tillage decreased event water transport for both lysimeters with and without an artificial macropore by ~30%. Findings show how varying initial and boundary conditions produce a continuum of preferential flow. Water and tracer flux data collected in the current study are therefore essential for predicting conditions with high relevance of preferential flow and contaminant transport when assessing or modelling long‐term hydrographs where these conditions are only met during a small proportion of the flow time.
more »
« less
This content will become publicly available on November 10, 2025
Subsurface Sediment Transport in the Shallow Vadose Zone of Fine‐Textured Soils With Heterogenous Preferential Flows
ABSTRACT Subsurface sediment transport in tile‐drained landscapes occurs through macropores; however, little is known regarding how heterogeneous preferential flows influence fluxes. We performed laboratory rainfall simulations on 10 intact core lysimeters from a tile‐drained field in Indiana, USA to study the impacts of surface and subsurface erosion on sediment leachate in heterogeneous preferential flow paths. Seven rainfall simulations were conducted to assess the impact of rainfall intensity on the leachate of surface eroded sediments (three events), and the impact of antecedent conditions on subsurface eroded sediments (four events). Cumulative sediment yield, linear mixed effects modelling, and hysteresis analyses were performed for all events. Results were presented in a series of four case studies. Results showed that surface sediment leachate concentration and yield were tightly linked to the filtration capacity of lysimeters, with more than 2/3rd of sediment originating from a single lysimeter, despite similar flow leachate volumes from each. Rainfall intensity significantly impacted the transport of surface eroded sediment at the highest intensity. Subsurface sediment erosion from undisturbed macropores was low compared to surface soils, but we found contrasting controls on sediment concentrations at low and high antecedent moistures that were equally important to sediment leachate yields. Disturbed macropores produced comparable sediment yields to surface erosion and behaved similarly to soil pipes in terms of erosion mechanics. Hysteresis results generally highlighted contrasting results for surface and subsurface sources but suggest that the prominence of slow flow, low‐concentration leachate sources can alter the interpretation of results in field‐scale applications. Our findings underscore an array of processes and pathways for sediment transport in the shallow vadose zone, and results will be useful for evaluating new model formulations.
more »
« less
- Award ID(s):
- 2032701
- PAR ID:
- 10556906
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 38
- Issue:
- 11
- ISSN:
- 0885-6087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Threshold changes in rainfall‐runoff generation commonly represent shifts in runoff mechanisms and hydrologic connectivity controlling water and solute transport and transformation. In watersheds with limited human influence, threshold runoff responses reflect interaction between precipitation event and antecedent soil moisture. Similar analyses are lacking in intensively managed landscapes where installation of subsurface drainage tiles has altered connectivity between the land surface, groundwater, and streams, and where application of fertilizer has created significant stores of subsurface nitrogen. In this study, we identify threshold patterns of tile‐runoff generation for a drained agricultural field in Illinois and evaluate how antecedent conditions—including shallow soil moisture, groundwater table depth, and the presence or absence of crops—control tile response. We relate tile‐runoff thresholds to patterns of event nitrate load observed across multiple storm events and evaluate how antecedent conditions control within‐event nitrate concentration‐discharge relationships. Our results demonstrate that an event tile‐runoff threshold emerges relative to the sum of gross precipitation and indices of antecedent shallow soil moisture and antecedent below‐tile groundwater moisture deficit, indicating that both shallow soil and below‐tile storages must be filled to generate significant runoff. In turn, event nitrate load shows a linear dependence on runoff for most time periods, suggesting that subsurface nitrate export and storage can be estimated using runoff threshold relationships and long‐term average nitrate concentrations. Finally, within‐event nitrate concentration‐discharge relationships are controlled by event size and the antecedent tile flow state because these factors dictate the sequence of flow path activation and tile connectivity over a storm event.more » « less
-
Soil piping (concentrated leak erosion) is a major contributor to soil erosion in many parts of the world, and collapse of eroded pipes can result in the formation of gullies and sinkholes or trigger slope instability. Despite these significant impacts, there is little understanding of factors controlling pipe collapse, and how water within the pipe influences moisture levels within a slope. In this study, physical models were employed on unsaturated model slopes with pre-formed macropores to investigate how soil properties, pipe characteristics, and hydraulic conditions govern internal erosion processes and slope stability. Experiments simulated shallow field conditions (0.45 m overburden) using 4 mm and 12 mm pipes to establish preferential flow paths, while varying model parameters including initial compaction moisture content and density, pipe condition (absent, closed, or open), slope angle, and model width. Volumetric water content sensors monitored moisture evolution, while cameras captured slope responses to subsurface flow. Results demonstrate that initial compaction conditions (water content and density), pipe size, hydraulic connectivity, and pipe condition control internal erosion processes and slope stability.more » « less
-
Per- and polyfluoroalkyl substances (PFAS) are surface-active contaminants, which are detected in groundwater globally, presenting serious health concerns. The vadose zone and surface water are recognized as primary sources of PFAS contamination. Previous studies have explored PFAS transport and retention mechanisms in the vadose zone, revealing that adsorption at interfaces and soil/sediment heterogeneity significantly influences PFAS retention. However, our understanding of how surface water−groundwater interactions along river corridors impact PFAS transport remains limited. To analyze PFAS transport during surface water−groundwater interactions, we performed saturated−unsaturated flow and reactive transport simulations in heterogeneous riparian sediments. Incorporating uncertainty quantification and sensitivity analysis, we identified key physical and geochemical sediment properties influencing PFAS transport. Our models considered aqueous-phase transport and adsorption both at the air−water interface (AWI) and the solid-phase surface. We tested different cases of heterogeneous sediments with varying volume proportions of higher permeability sediments, conducting 2000 simulations for each case, followed by global sensitivity and response surface analyses. Results indicate that sediment porosities, which are correlated to permeabilities, are crucial for PFAS transport in riparian sediments during river stage fluctuations. High-permeable sediment (e.g., sandy gravel, sand) is the preferential path for the PFAS transport, and low-permeable sediment (e.g., silt, clay) is where PFAS is retained. Additionally, the results show that adsorption at interfaces (AWI and solid phase) has a small impact on PFAS retention in riparian environments. This study offers insights into factors influencing PFAS transport in riparian sediments, potentially aiding the development of strategies to reduce the risk of PFAS contamination in groundwater from surface water.more » « less
-
Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L−1), POC (> 250 mg L−1) and PN (> 15 mg L−1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems.more » « less
An official website of the United States government
