skip to main content


Title: Freeze–thaw processes and intense rainfall: the one-two punch for high sediment and nutrient loads from mid-Atlantic watersheds
Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L−1), POC (> 250 mg L−1) and PN (> 15 mg L−1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems.  more » « less
Award ID(s):
1641157
NSF-PAR ID:
10049917
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biogeochemistry
ISSN:
0168-2563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glacierized coastal catchments of the Gulf of Alaska (GoA) are undergoing rapid hydrologic fluctuations in response to climate change. These catchments deliver dissolved and suspended inorganic and organic matter to nearshore marine environments, however, these glacierized coastal catchments are relatively understudied and little is known about total solute and particulate fluxes to the ocean. We present hydrologic, physical, and geochemical data collected during April–October 2019–2021 from 10 streams along gradients of glacial fed to non‐glacial (i.e., precipitation) fed, in one Southcentral and one Southeast Alaska region. Hydrologic data reveal that glaciers drive the seasonal runoff patterns. The ẟ18O signature and specific conductance show distinctive seasonal variations in stream water sources between the study regions apparently due to the large amounts of rain in Southeast Alaska. Total dissolved solids concentrations and yields were elevated in the Southcentral region, due to lithologic influence on dissolved loads, however, the hydroclimate is the primary driver of the timing of dissolved and suspended yields. We show the yields of dissolved organic carbon is higher and that the δ13CPOCis enriched in the Southeast streams illustrating contrasts in organic carbon export across the GoA. Finally, we illustrate how future yields of solutes and sediments to the GoA may change as watersheds evolve from glacial influenced to precipitation dominated. This integrated analysis provides insights into how watershed characteristics beyond glacier coverage control properties of freshwater inputs to the GoA and the importance of expanding study regions to multiple hydroclimate regimes.

     
    more » « less
  2. Abstract

    Wildfire is a natural component of sagebrush (Artemisiaspp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n= 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post‐fire period and subsequent flushing of these sediments by runoff from cold‐season hydrologic processes. Our results suggest that the interaction of aeolian and cold‐season hydrologic‐driven erosion processes is an important component for consideration in post‐fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  3. Abstract

    Lithogenic sediment input to the Cariaco Basin on the eastern Venezuelan shelf is controlled by small mountainous rivers (SMRs). The Cariaco Basin is also an area of high phytoplankton productivity as a result of strong Trade Wind‐driven coastal upwelling. Characterizing the sources that supply particulate organic carbon (POC) to the deep Cariaco Basin is important for interpreting the paleoclimate record stored in its sediments. We measured suspended POC in the four main rivers draining into the Caraiaco Basin, the Tuy, Unare, Neveri, and Manzanares, between September 2008 and September 2009 and conducted basin‐wide oceanographic cruises in September 2008 (rainy season) and March 2009 (upwelling season). Riverine concentrations of dissolved organic carbon (DOC) and POC in the four rivers were comparable to observations made in similar tropical SMR systems (POC was between 0.3–2 mg C l−1; DOC was between 100–300 μM). Within the basin, the geochemical composition of surface particles and bottom nepheloid layers (BNLs) changed with season. During the rainy season, the isotopic composition of both surface particles and BNL was characteristic of continentally derived material (δ13Corg, approximately −30 to −26‰), while during upwelling, the composition shifted to values more typical of marine sources (δ13Corg, approximately −24 to −20‰). SMRs represent an important component of the global carbon budget, which are often overlooked in ocean carbon budgets and also in paleoclimate studies of coastal environments.

     
    more » « less
  4. Abstract

    Biospheric particulate organic carbon (POCbio) burial and rock petrogenic particulate organic carbon (POCpetro) oxidation are opposing long‐term controls on the global carbon cycle, sequestering and releasing carbon, respectively. Here, we examine how watershed glacierization impacts the POC source by assessing the concentration and isotopic composition (δ13C and Δ14C) of POC exported from four watersheds with 0%–49% glacier coverage across a melt season in Southeast Alaska. We used two mixing models (age‐weight percent and dual carbon isotope) to calculate concentrations of POCbioand POCpetrowithin the bulk POC pool. The fraction POCpetrocontribution was highest in the heavily glacierized watershed (age‐weight percent: 0.39 ± 0.05; dual isotope: 0.42 (0.37–0.47)), demonstrating a glacial source of POCpetroto fjords. POCpetrowas mobilized via glacier melt and subglacial flow, while POCbiowas largely flushed from the non‐glacierized landscape by rain. Flow normalized POCbioconcentrations exceeded POCpetroconcentrations for all streams, but surprisingly were highest in the heavily glacierized watershed (mean: 0.70 mgL−1; range 0.16–1.41 mgL−1), suggesting that glacier rivers can contribute substantial POCbioto coastal waters. Further, the most heavily glacierized watershed had the highest sediment concentration (207 mgL−1; 7–708 mgL−1), and thus may facilitate long‐term POCbioprotection via sediment burial in glacier‐dominated fjords. Our results suggest that continuing glacial retreat will decrease POC concentrations and increase POCbio:POCpetroexported from currently glacierized watersheds. Glacier retreat may thus decrease carbon storage in marine sediments and provide a positive feedback mechanism to climate change that is sensitive to future changes in POCpetrooxidation.

     
    more » « less
  5. Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especially in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring. 
    more » « less