skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drainage Canals in Southeast Asian Peatland
These images depict drainage canals and roads in peatlands in Borneo, Sumatra, and Peninsular Malaysia at 5 meter resolution. These canals were detected from July-September 2017 Planet Basemaps satellite imagery using a convolutional neural network. Please contact Nathan Dadap (ndadap@stanford.edu) with any questions.  more » « less
Award ID(s):
1923478
PAR ID:
10556931
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Stanford Digital Repository
Date Published:
Subject(s) / Keyword(s):
Peatlands Drainage Southeast Asia Imagery and Base Maps
Format(s):
Medium: X Other: https://purl.stanford.edu/yj761xk5815
Location:
Insular Southeast Asia
Right(s):
Creative Commons Attribution No Derivatives 3.0 Unported
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The capacity for coastal river networks to transport and transform dissolved organic matter (DOM) is widely accepted. However, climate‐induced shifts in stormwater runoff and tidal extension alter fresh and marine water source contributions, associated DOM, and processing rates of nutrients entering coastal canals. We investigate how time‐variable interactions among coastal water source contributions influence the concentrations of dissolved organic carbon (DOC), nutrients, and DOM composition in urban canals. We quantified the spatiotemporal variability of DOM quality and nutrient concentrations to determine contributions of tidal marine water, rainwater, stormwater runoff, and groundwater to three coastal urban canals of Miami, Florida (USA). We created a Bayesian Monte Carlo mixing model using measurements of fluorescent DOM (fDOM), DOC concentrations, δ18O and δ2H isotopic signatures, and chloride (Cl). Fractional contributions of groundwater averaged 17% in the dry season and 26% at peak high tide during the subtropical wet season (September–November). The canal‐to‐marine head difference (CMHD) was a primary driver of groundwater contributions to coastal urban canals and monthly patterns of fDOM/DOC. High tide (>1 m) and discharge events were found to connect canals to upstream sources of terrestrial DOM. Loading of terrestrially sourced DOC and DOM is pulsed to urban canals, shunted downstream and supplemented by microbially sourced DOM during the wet season at high tide. Overall, we demonstrate that a combined tracer approach with isotopes and fDOM can help identify groundwater contributions to coastal waterways and that autochthonous fDOM may prime the degradation of carbon or nutrients as the CMHD pushes inland. 
    more » « less
  2. Abstract Drainage canals associated with logging and agriculture dry out organic soils in tropical peatlands, thereby threatening the viability of long‐term carbon stores due to increased emissions from decomposition, fire, and fluvial transport. In Southeast Asian peatlands, which have experienced decades of land use change, the exact extent and spatial distribution of drainage canals are unknown. This has prevented regional‐scale investigation of the relationships between drainage, land use, and carbon emissions. Here, we create the first regional map of drainage canals using high resolution satellite imagery and a convolutional neural network. We find that drainage is widespread—occurring in at least 65% of peatlands and across all land use types. Although previous estimates of peatland carbon emissions have relied on land use as a proxy for drainage, our maps show substantial variation in drainage density within land use types. Subsidence rates are 3.2 times larger in intensively drained areas than in non‐drained areas, highlighting the central role of drainage in mediating peat subsidence. Accounting for drainage canals was found to improve a subsidence prediction model by 30%, suggesting that canals contain information about subsidence not captured by land use alone. Thus, our data set can be used to improve subsidence and associated carbon emissions predictions in peatlands, and to target areas for hydrologic restoration. 
    more » « less
  3. Abstract Tropical wetlands and freshwaters are major contributors to the growing atmospheric methane (CH4) burden. Extensive peatland drainage has lowered CH4emissions from peat soils in Southeast Asia, but the canals draining these peatlands may be hotspots of CH4emissions. Alternatively, CH4oxidation (consumption) by methanotrophic microorganisms may attenuate emissions. Here, we used laboratory experiments and a synoptic survey of the isotopic composition of CH4in 34 canals across West Kalimantan, Indonesia to quantify the proportion of CH4that is consumed and therefore not emitted to the atmosphere. We find that CH4oxidation mitigates 76.4 ± 12.0% of potential canal emissions, reducing emissions by ~70 mg CH4m−2d−1. Methane consumption also significantly impacts the stable isotopic fingerprint of canal CH4emissions. As canals drain over 65% of peatlands in Southeast Asia, our results suggest that CH4oxidation significantly influences landscape-scale CH4emissions from these ecosystems. 
    more » « less
  4. Abstract Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies. 
    more » « less
  5. ABSTRACT The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing and rearranging. The developing Drosophila egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of 16 germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, ‘first-born’ ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals that different strategies could be used to alter final egg size. 
    more » « less