Abstract BackgroundMuscle synergies, computationally identified intermuscular coordination patterns, have been utilized to characterize neuromuscular control and learning in humans. However, it is unclear whether it is possible to alter the existing muscle synergies or develop new ones in an intended way through a relatively short-term motor exercise in adulthood. This study aimed to test the feasibility of expanding the repertoire of intermuscular coordination patterns through an isometric, electromyographic (EMG) signal-guided exercise in the upper extremity (UE) of neurologically intact individuals. Methods10 participants were trained for six weeks to induce independent control of activating a pair of elbow flexor muscles that tended to be naturally co-activated in force generation. An untrained isometric force generation task was performed to assess the effect of the training on the intermuscular coordination of the trained UE. We applied a non-negative matrix factorization on the EMG signals recorded from 12 major UE muscles during the assessment to identify the muscle synergies. In addition, the performance of training tasks and the characteristics of individual muscles’ activity in both time and frequency domains were quantified as the training outcomes. ResultsTypically, in two weeks of the training, participants could use newly developed muscle synergies when requested to perform new, untrained motor tasks by activating their UE muscles in the trained way. Meanwhile, their habitually expressed muscle synergies, the synergistic muscle activation groups that were used before the training, were conserved throughout the entire training period. The number of muscle synergies activated for the task performance remained the same. As the new muscle synergies were developed, the neuromotor control of the trained muscles reflected in the metrics, such as the ratio between the targeted muscles, number of matched targets, and task completion time, was improved. ConclusionThese findings suggest that our protocol can increase the repertoire of readily available muscle synergies and improve motor control by developing the activation of new muscle coordination patterns in healthy adults within a relatively short period. Furthermore, the study shows the potential of the isometric EMG-guided protocol as a neurorehabilitation tool for aiming motor deficits induced by abnormal intermuscular coordination after neurological disorders. Trial registrationThis study was registered at the Clinical Research Information Service (CRiS) of the Korea National Institute of Health (KCT0005803) on 1/22/2021.
more »
« less
Rate of change in longitudinal EMG indicates time course of an individual's neuromuscular adaptation in resistance-based muscle training
An individual's long-term neuromuscular adaptation can be measured through time-domain analyses of surface electromyograms (EMG) in regular resistance-based training. The perceived changes in recruitment, such as those measured during muscle fatigue, can subsequently prolong the recovery time in rehabilitation applications. Thus, by developing quantifiable methods for measuring neuromuscular adaptation, adjuvant treatments applied during neurorehabilitation can be improved to reduce recovery times and to increase patient quality of care. This study demonstrates a novel time-domain analysis of long-term changes in EMG captured neuromuscular activity that we aim to use to develop a quantified performance metric for muscle-based intervention training and optimization of an individual. We measure EMG of endurance and hypertrophy-based resistance exercises of healthy participants over 100 days to identify trends in long-term neuromuscular adaptation. Particularly, we show that the rate of EMG amplitude increase (motor recruitment) is dependent on the training modality of an individual. Particularly, EMG decreases over time with repetitive training – but the rate of decrease is different in hypertrophy, endurance, and control exercises. We found that the EMG peak contraction decreases across all subjects, on average, by 8.23 dB during hypertrophy exercise and 10.09 dB for endurance exercises over 100 days of training, while control participants showed negligible change. This represents approximately 2 dB difference EMG activity when comparing endurance and hypertrophy exercises, and >8 dB change when comparing to our control cases. As such, we show that the slope of the long-term EMG activity is related to the resistance-based exercise. We believe this can be used to identify person-specific performance metrics, and to create optimized interventions using a measured performance baseline of an individual.
more »
« less
- Award ID(s):
- 2130651
- PAR ID:
- 10556943
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Rehabilitation Sciences
- Volume:
- 3
- ISSN:
- 2673-6861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objective. Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activity of residual muscle is similar to that of intact muscle. This study sought to understand potential changes to motor unit (MU) properties after limb amputation. Approach. Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intact tibialis anterior (TA) and gastrocnemius (GA) muscles were recorded while subjects traced profiles targeting up to 20 and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of motor unit (MU) spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman’s size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles. Main results. The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates. Significance. We showed peripheral neuromuscular damage also leads to spinal-level functional reorganization. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.more » « less
-
Robotic exoskeletons can assist humans with walking by providing supplemental torque in proportion to the user's joint torque. Electromyographic (EMG) control algorithms can estimate a user's joint torque directly using real-time EMG recordings from the muscles that generate the torque. However, EMG signals change as a result of supplemental torque from an exoskeleton, resulting in unreliable estimates of the user's joint torque during active exoskeleton assistance. Here, we present an EMG control framework for robotic exoskeletons that provides consistent joint torque predictions across varying levels of assistance. Experiments with three healthy human participants showed that using diverse training data (from different levels of assistance) enables robust torque predictions, and that a convolutional neural network (CNN), but not a Kalman filter (KF), can capture the non-linear transformations in EMG due to exoskeleton assistance. With diverse training, the CNN could reliably predict joint torque from EMG during zero, low, medium, and high levels of exoskeleton assistance [root mean squared error (RMSE) below 0.096 N-m/kg]. In contrast, without diverse training, RMSE of the CNN ranged from 0.106 to 0.144 N-m/kg. RMSE of the KF ranged from 0.137 to 0.182 N-m/kg without diverse training, and did not improve with diverse training. When participant time is limited, training data should emphasize the highest levels of assistance first and utilize at least 35 full gait cycles for the CNN. The results presented here constitute an important step toward adaptive and robust human augmentation via robotic exoskeletons. This work also highlights the non-linear reorganization of locomotor output when using assistive exoskeletons; significant reductions in EMG activity were observed for the soleus and gastrocnemius, and a significant increase in EMG activity was observed for the erector spinae. Control algorithms that can accommodate spatiotemporal changes in muscle activity have broad implications for exoskeleton-based assistance and rehabilitation following neuromuscular injury.more » « less
-
Stroke survivors experience muscle weakness and low weight-bearing capacity that impair their walking. The activation of the plantarflexor muscles is diminished following a stroke, which degrades propulsion and balance. Powered exoskeletons can improve gait capacity and restore impaired muscle activity. However, a technical barrier exists to generate systematic control methods to predictably and safely perturb the paretic leg using a wearable device to characterize the plantarflexors’ muscle output for gait training. In this paper, a closed-loop robust controller is designed to impose an ankle joint rotation (i.e., a kinematic perturbation) in the mid-late stance phase to target the soleus muscle using a powered cable-driven ankle-foot orthosis. The goal is to generate soleus muscle activity increments throughout a gait experiment by applying ankle perturbations. This ability to modulate plantarflexor activity can be used in future conditioning studies to improve push-off and propulsion during walking. However, the optimal perturbation magnitude for each participant is unknown. Hence, online adaptation of the ankle perturbation is well-motivated to modulate the soleus response measured using surface electromyography (EMG). An extremum seeking controller (ESC) is implemented in real-time to compute the ankle perturbation magnitude (i.e., dorsiflexion angle) exploiting the soleus EMG response from the previous perturbed step to maximize the soleus response in the next perturbed step. A Lyapunov-based stability analysis is used to guarantee exponential kinematic tracking of the ankle perturbation objective.more » « less
-
Background/Objectives: This study explores an optimization-based strategy for muscle force estimation by employing simplified cost functions integrated with physiologically relevant muscle models. Methods: Considering elbow flexion as a case study, we employ an inverse-dynamics approach to estimate muscle forces for the biceps brachii, brachialis, and brachioradialis, utilizing different combinations of cost functions and muscle constitutive models. Muscle force generation is modeled by accounting for active and passive contractile behavior to varying degrees using Hill-type models. In total, three separate cost functions (minimization of total muscle force, mechanical work, and muscle stress) are evaluated with each muscle force model to represent potential neuromuscular control strategies without relying on electromyography (EMG) data, thereby characterizing the interplay between muscle models and cost functions. Results: Among the evaluated models, the Hill-type muscle model that incorporates both active and passive properties, combined with the stress minimization cost function, provided the most accurate predictions of muscle activation and force production for all three arm flexor muscles. Our results, validated against existing biomechanical data, demonstrate that even simplified cost functions, when paired with detailed muscle models, can achieve high accuracy in predicting muscle forces. Conclusions: This approach offers a versatile, EMG-free alternative for estimating muscle recruitment and force production, providing a more accessible and adaptable tool for muscle force analysis. It has profound implications for enhancing rehabilitation protocols and athletic training, not only broadening the applicability of muscle force estimation in clinical and sports settings but also paving the way for future innovations in biomechanical research.more » « less
An official website of the United States government

