The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate that is projected to weaken under future anthropogenic climate change. While many studies have investigated the AMOC’s response to different levels and types of forcing in climate models, relatively little attention has been paid to the AMOC’s sensitivity to the rate of forcing change, despite it also being highly uncertain in future emissions scenarios. In this study, I isolate the AMOC’s response to different rates of CO2increase in a state-of-the-art global climate model and find that the AMOC undergoes more severe weakening under faster rates of CO2change, even when the magnitude of CO2change is the same. I then propose an AMOC-ocean heat transport-sea ice feedback that enhances the decline of the circulation and explains the dependence on the rate of forcing change. The AMOC’s rate-sensitive behavior leads to qualitatively different climates (including differing Arctic sea ice evolution) at the same CO2concentration, highlighting how the rate of forcing change is itself a key driver of global climatic change.
more »
« less
Decreased northern hemisphere precipitation from consecutive CO 2 doublings is associated with significant AMOC weakening
Abstract Previous studies found many climate properties such as northern hemisphere (NH) surface temperature and precipitation respond non-monotonically when CO2is increased from 1×to 8×CO2relative to pre-industrial levels. Here, we explore the robustness of the non-monotonicity in the NH precipitation response in 11 coupled climate models. Eight models show a decrease in NH precipitation under repeated CO2doubling, indicating that the non-monotonic response is a common but not universal result. Although common, the critical CO2level where the NH precipitation decrease first occurs differs widely across models, ranging from 2×CO2to 8×CO2. These models also show a prominent weakening in the Atlantic meridional overturning circulation (AMOC) at the same critical CO2level, with the AMOC weakening leading the precipitation decrease. The sensitivities of NH precipitation and the AMOC to CO2doublings are positively correlated, especially when the AMOC weakens beyond 10 Sv. This suggests that the differences in models’ AMOC response can explain their contrasting NH precipitation responses, where models with a large AMOC weakening have decreased NH precipitation. Regionally, this decrease in NH precipitation is the most prominent over the North Atlantic, Europe and the tropical Pacific. Our results suggest that special care must be taken with the use of pattern scaling to inform regional climate decision-making.
more »
« less
- Award ID(s):
- 2335761
- PAR ID:
- 10557255
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Climate
- Volume:
- 3
- Issue:
- 4
- ISSN:
- 2752-5295
- Format(s):
- Medium: X Size: Article No. 041005
- Size(s):
- Article No. 041005
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While most models agree that the Atlantic meridional overturning circulation (AMOC) becomes weaker under greenhouse gas emission and is likely to weaken over the twenty-first century, they disagree on the projected magnitudes of AMOC weakening. In this work, CMIP6 models with stronger climatological AMOC are shown to project stronger AMOC weakening in both 1% ramping CO2and abrupt CO2quadrupling simulations. A physical interpretation of this result is developed. For models with stronger mean state AMOC, stratification in the upper Labrador Sea is weaker, allowing for stronger mixing of the surface buoyancy flux. In response to CO2increase, surface warming is mixed to the deeper Labrador Sea in models with stronger upper-ocean mixing. This subsurface warming and corresponding density decrease drives AMOC weakening through advection from the Labrador Sea to the subtropics via the deep western boundary current. Time series analysis shows that most CMIP6 models agree that the decrease in subsurface Labrador Sea density leads AMOC weakening in the subtropics by several years. Also, idealized experiments conducted in an ocean-only model show that the subsurface warming over 500–1500 m in the Labrador Sea leads to stronger AMOC weakening several years later, while the warming that is too shallow (<500 m) or too deep (>1500 m) in the Labrador Sea causes little AMOC weakening. These results suggest that a better representation of mean state AMOC is necessary for narrowing the intermodel uncertainty of AMOC weakening to greenhouse gas emission and its corresponding impacts on future warming projections.more » « less
-
Abstract Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change.more » « less
-
Abstract We compare abrupt CO2‐quadrupling (abrupt‐4xCO2) and ‐doubling (abrupt‐2xCO2) simulations across 10 CMIP6 models. Two models (CESM2 and MRI‐ESM2‐0) warm substantially more than twice as much under abrupt‐4xCO2 than abrupt‐2xCO2, which cannot be explained by the non‐logarithmic scaling of CO2forcing. Using an energy balance model, we show that increased warming rates within these two models are driven by both less‐negative radiative feedbacks and smaller global effective heat capacity under abrupt‐4xCO2. These differences are caused by a decrease in low cloud cover andshallower ocean heat storage, respectively; both are linked to smaller fractional declines in the Atlantic Meridional Overturning Circulation (AMOC) under abrupt‐4xCO2 (relative to abrupt‐2xCO2). On a global scale, higher climate sensitivity under larger forcing can be explained by a feedback‐temperature dependence; however, we find that forcing‐dependent spatial warming patterns due to AMOC decline are an important physical mechanism which reduces warming in a way that is not captured by a global‐mean framework.more » « less
-
Abstract During the Middle Miocene Climate Transition (MMCT; ∼14.7–13.8 Ma), the global climate experienced rapid cooling, leading to modern‐like temperatures, precipitation patterns, and permanent ice sheets. However, proxy records indicate that atmospheric pCO2and regional climate conditions (SST, ice volume) were highly variable from 17 to 12.5 Ma and these changes were not always synchronous. Here, we report on a series of middle Miocene (∼16–12.5 Ma) simulations using the water isotope enabled earth system model (iCESM1.2) to explore the potential for multiple equilibrium states to explain the observed decoupling between pCO2and regional climates. Our simulations indicate that initial ocean conditions can significantly influence deep water formation in the North Atlantic and lead to multiple ocean equilibria. When the model is initiated from a cold state, residual cool surface water temperatures in the North Atlantic intensify Atlantic Meridional Ocean Circulation (AMOC) and inhibit Arctic sea‐ice formation. When initiated from a warm state, the AMOC remains weak. The different ocean states drive differences in equator‐to‐pole sea surface temperature gradients and sea ice distributions through heat redistribution changes. These equilibria cause variations in temperature gradients and sea ice distribution due to changes in heat redistribution. Additionally, changes in ocean circulation and a reduced temperature gradient in the North Atlantic increase North Atlantic precipitation when the AMOC is strong. These findings underscore the importance of the ocean's initial state in shaping regional climate responses to atmospheric pCO2, potentially explaining regional climate pattern variability observed during the Miocene.more » « less
An official website of the United States government
