skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mean State AMOC Affects AMOC Weakening through Subsurface Warming in the Labrador Sea
Abstract While most models agree that the Atlantic meridional overturning circulation (AMOC) becomes weaker under greenhouse gas emission and is likely to weaken over the twenty-first century, they disagree on the projected magnitudes of AMOC weakening. In this work, CMIP6 models with stronger climatological AMOC are shown to project stronger AMOC weakening in both 1% ramping CO2and abrupt CO2quadrupling simulations. A physical interpretation of this result is developed. For models with stronger mean state AMOC, stratification in the upper Labrador Sea is weaker, allowing for stronger mixing of the surface buoyancy flux. In response to CO2increase, surface warming is mixed to the deeper Labrador Sea in models with stronger upper-ocean mixing. This subsurface warming and corresponding density decrease drives AMOC weakening through advection from the Labrador Sea to the subtropics via the deep western boundary current. Time series analysis shows that most CMIP6 models agree that the decrease in subsurface Labrador Sea density leads AMOC weakening in the subtropics by several years. Also, idealized experiments conducted in an ocean-only model show that the subsurface warming over 500–1500 m in the Labrador Sea leads to stronger AMOC weakening several years later, while the warming that is too shallow (<500 m) or too deep (>1500 m) in the Labrador Sea causes little AMOC weakening. These results suggest that a better representation of mean state AMOC is necessary for narrowing the intermodel uncertainty of AMOC weakening to greenhouse gas emission and its corresponding impacts on future warming projections.  more » « less
Award ID(s):
2026863
PAR ID:
10413891
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
12
ISSN:
0894-8755
Page Range / eLocation ID:
p. 3895-3915
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous studies found many climate properties such as northern hemisphere (NH) surface temperature and precipitation respond non-monotonically when CO2is increased from 1×to 8×CO2relative to pre-industrial levels. Here, we explore the robustness of the non-monotonicity in the NH precipitation response in 11 coupled climate models. Eight models show a decrease in NH precipitation under repeated CO2doubling, indicating that the non-monotonic response is a common but not universal result. Although common, the critical CO2level where the NH precipitation decrease first occurs differs widely across models, ranging from 2×CO2to 8×CO2. These models also show a prominent weakening in the Atlantic meridional overturning circulation (AMOC) at the same critical CO2level, with the AMOC weakening leading the precipitation decrease. The sensitivities of NH precipitation and the AMOC to CO2doublings are positively correlated, especially when the AMOC weakens beyond 10 Sv. This suggests that the differences in models’ AMOC response can explain their contrasting NH precipitation responses, where models with a large AMOC weakening have decreased NH precipitation. Regionally, this decrease in NH precipitation is the most prominent over the North Atlantic, Europe and the tropical Pacific. Our results suggest that special care must be taken with the use of pattern scaling to inform regional climate decision-making. 
    more » « less
  2. Abstract The ocean’s role in Atlantic Multidecadal Variability (AMV) remains intensely debated. The core issue is whether AMV, as an internal climate mode, is driven by variations in Atlantic Meridional Overturning Circulation (AMOC) or by atmospheric processes. Climate models exhibit wide diversity in AMOC-AMV linkages, producing temporal correlations between 0.3-0.8, but no robust explanation for these differences exists. Here, using multi-model intercomparison and perturbation experiments, we propose a dynamical mechanism relating the strength of AMOC-AMV linkage in climate models to stratospheric temperature. This mechanism includes (1) tropospheric midlatitude jet response to stratospheric mean-state temperature anomalies in mid-latitudes and (2) resulting ocean surface density changes that alter the spatial structure of deep-water formation in the subpolar North Atlantic and hence AMOC-AMV connection. Specifically, colder stratospheric temperatures produce tighter linkage through the northward jet shifts and a stronger AMOC, with enhanced deep-water formation in the Labrador and Irminger Seas relative to the Nordic Seas. Models with a warm stratospheric bias tend to produce weaker linkage. Perturbation experiments imposing stratospheric cooling at mid to high latitudes within two independent climate models support these conclusions. Furthermore, we find that models with stronger AMOC-AMV linkage predict a stronger North Atlantic “warming hole” and weaker 21st-century Arctic amplification. We conclude that these results have significant implications for climate prediction and projections. 
    more » « less
  3. null (Ed.)
    Abstract As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale. 
    more » « less
  4. Abstract Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections. 
    more » « less
  5. Abstract The Atlantic meridional overturning circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, preindustrial control experiments from models participating in the phase 6 of Coupled Model Intercomparison Project (CMIP6) are evaluated. There is a large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm–salty or cold–fresh subpolar gyre, it is shown that warm–salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm–salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm–salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm–salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models. 
    more » « less