skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Capabilities of Emerging Nonintrusive Methods to Estimate Bedform Characteristics and Bedload Rates
Abstract A new measurement protocol, labeled Acoustic Mapping Velocimetry (AMV), has been successfully tested for in‐situ estimation of bedload transport features in sandy beds. The AMV has proven efficient in using the dune‐tracking method (DTM) for characterizing the bedform geometry and dynamics as well as for estimation of the rates of bedload transport. Given the novelty of the AMV protocol and its extensive reliance on multiple site‐specific assumptions and user‐defined parameters, a comparison of this emerging technique with other three non‐intrusive DTM‐based methods and analytical predictors is attempted in this paper. The comparison highlights that the AMV estimates are within 22% of the estimates with the other non‐intrusive protocols and up to 98% different from analytical predictions. The observed differences are related to the possible sources of uncertainty in the AMV workflows and to the means to reduce their impact on the targeted estimations.  more » « less
Award ID(s):
1948944
PAR ID:
10557376
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aquatic vegetation has the potential to increase suspended sediment capture while also increasing sediment resuspension and bedload transport. Suspended sediment can induce density stratification, which modulates the turbulence in the water column. We derive a Rouse‐based formulation for suspended sediment concentration (SSC) including the effect of sediment‐induced density stratification. We perform Large Eddy Simulations of vegetated and non‐vegetated channels to explicitly highlight the effect of stratification on SSC profiles. We found that the impact of stratification is dominant in the near‐bed region within the bottom boundary layer, affecting both sediment resuspension and bedload transport. Stratification reduces the likelihood of both dominant sweep and ejection events in the near the bed region which may affect sediment entrainment and bedload transport. Modifications to existing models of sediment entrainment and bedload transport are suggested to account for the effects of sediment induced stratification in vegetated and non‐vegetated channels. 
    more » « less
  2. null (Ed.)
    In this poster abstract, we present a thermal comfort estimation system using low-cost thermal camera based sensor nodes. This system extracts perspective invariant, non-intrusive thermal measurements, is easily deployable and low-cost, and can incorporate individual thermal feedback for more personalized thermal comfort estimates. In comparison with baseline methods, our system is able to improve thermal comfort estimates on the ASHRAE 7-point thermal sensation scale by up to 64% over baseline methods. 
    more » « less
  3. Abstract Accounting for the burial of tracer particles during bedload transport is an important component in the formulation of tracer dispersal in rivers. Herein we propose a modified active layer formulation, which accounts for the effect of burial and admits analytical solutions, enabling insightful exploration of the phenomenon of superdiffusion of bedload tracers at the intermediate timescale. This phenomenon has been observed in recent numerical results using the 2‐D Exner‐Based Master Equation. By assuming that tracers in the active layer can exchange with nontracer particles in the substrate layer to preserve mass, and that tracers entering the substrate layer get permanently trapped during the timescale of analysis, we are able to deduce governing equations for the tracer concentration in both layers. The active layer tracer concentration is shown to be governed by an advection‐diffusion equation with a sink term, and the increase of tracers in the substrate layer is driven by a corresponding source term. The solution for the variance of tracer population is analytically determined and can be approximated by the sum of a diffusion‐induced scaling (∝t1) and an advection‐induced scaling (∝t3) terms at the intermediate timescale, which explains the phenomenon of superdiffusion. The proposed formulation is shown to be able to capture the key characteristics of tracer transport as inferred by comparison with available results of numerical simulations. 
    more » « less
  4. Abstract We calibrated an acoustic pipe microphone system to monitor bedload flux in a sandy, gravel‐bed ephemeral channel. Ours is a first attempt to test the limit of an acoustic surrogate bedload system in a channel with a high content of sand. Calibrations varied in quality; significant data subsetting was required to achieve R2values >0.75. Several data quality issues had to be addressed: (1) apparent pulses, which occur when a sensor records an impulse from sediment impacting the surrounding substrate rather than directly impacting the sensor, were frequent, especially at higher signal amplifications. (2) The impact sensors were frequently covered by gravel sheets. This prompted the development of a cover detection protocol that rejected part of the impact sensor record when at least one sensor was partially or fully covered. (3) Because of the lack of sensor sensitivity to impacts of sand‐sized particles, which was anticipated, and the considerable sand component of bedload in this channel, a grain size‐limited bedload flux was estimated. This was accomplished by sampling the bedload captured by slot samplers and evaluating the variation of grain size with increasing flow strength. This considerably improved the results when compared to attempts at estimating the flux of the entire distribution of grain sizes. This calibration is a successful first attempt, though the impact sensors required several site‐specific calibration steps. A universal set of equations using impact sensors to estimate bedload transport of fine‐gravel with a large content of sand remains elusive. Notwithstanding, our study demonstrates the utility of impact sensor data, producing relatively low root mean square errors that are independent of measurements of flow strength (i.e. discharge). These tools will be particularly useful in settings that would benefit from new methodologies for estimating bedload transport in sand‐rich gravel‐bed rivers, such as the American desert Southwest. 
    more » « less
  5. Abstract Modeled stream discharge is often used to drive sediment transport models across channel networks. Because sediment transport varies non‐linearly with flow rates, discharge modeled from daily total precipitation distributed evenly over 24‐hr may significantly underestimate actual bedload transport capacity. In this study, we assume bedload transport capacity determined from a hydrograph resulting from the use of hourly (1‐hr) precipitation is a close approximation of actual transport capacity and quantify the error introduced into a network‐scale bedload transport model driven by daily precipitation at channel network locations varying from lowland pool‐riffle channels to upland colluvial channels in a watershed where snow accumulation and melt can affect runoff processes. Transport capacity is determined using effective stresses and the Wilcock and Crowe (2003) equations and expressed in terms of transport capacity normalized by the bankfull value. We find that, depending on channel network location, cumulative error can range from 10% to more than two orders of magnitude. Surprisingly, variation in flow rates due to differences in hillslope and channel runoff do not seem to dictate the network locations where the largest errors in predicted bedload transport capacity occur. Rather, spatial variability of the magnitude of the effective‐bankfull‐excess shear stress and changes in runoff due to snow accumulation and melt exert the greatest influence. These findings have implications for flood‐hazard and aquatic habitat models that rely on modeled sediment transport driven by coarse‐temporal‐resolution climate data. 
    more » « less