Abstract Late Mesoproterozoic to Neoproterozoic sedimentary sequences within the Lake Superior region preserve critical paleogeographic records of the position of Laurentia spanning from the end of Midcontinent Rift extension through to the end of the Grenvillian Orogeny. Temporally calibrated paleomagnetic poles from these sequences are essential for resolving Laurentia's plate motion during these tectonic events. The 5 km thick ca. 1,080 to 1,045 Ma fluviolacustrine Oronto Group was deposited during thermal subsidence following rifting prior to onset of Grenvillian contractional deformation in the region. Prior paleomagnetic work has focused on the basal Freda Formation (ca. 1,075 Ma) leaving a long temporal gap in poles from that time until the ca. 990 Ma pole of the unconformably overlying Jacobsville Formation. A new U‐Pb detrital zircon maximum depositional age for the upper Freda Formation of 1,051.6 1.1 Ma indicates that Oronto Group deposition was prolonged. We have developed new inclination‐shallowing corrected paleomagnetic data from the Freda Formation that can be temporally calibrated within this improved chronostratigraphic framework. A new pole from the ca. 1,045 Ma upper Freda Formation is similar in position to that from the ca. 1,075 Ma lower Freda Formation. These data indicate that Laurentia's rapid motion of 20 cm/year from ca. 1,110 to 1,080 Ma significantly slowed to 2 cm/year following onset of the continent‐continent collision of the Grenvillian orogeny. These dynamics are what is predicted if the rapid motion was associated with differential plate tectonic motion that closed an ocean basin leading up to collisional orogenesis and the associated assembly of Rodinia.
more »
« less
Mid-Proterozoic geomagnetic field was more consistent with a dipole than a quadrupole
Abstract The current morphology of Earth’s time-averaged magnetic field can be approximated to a geocentric axial dipole (GAD), but whether such an approximation remains valid in deep time needs to be investigated. Studies have used paleomagnetic data to reconstruct the ancient field and generally support a GAD morphology since 2 Ga. Recently, the GAD model for mid-Proterozoic time has been challenged, and an alternative model was proposed wherein the mid-Proterozoic field was dominated by a normal-tesseral quadrupole (NTQ) with spherical harmonics of degree l = 2 and order m = 1. We performed forward modeling to quantitatively compare whether a GAD or an NTQ could provide a better fit to mid-Proterozoic paleomagnetic directions. To deal with the ambiguity in plate reconstruction, we first considered data only from Laurentia, and then we expanded the analysis to Baltica by reconstructing its position relative to Laurentia using the geologically based Northern Europe–North America (NENA) configuration. Finally, we included data from Siberia using two reconstruction models. Results showed that in three mid-Proterozoic intervals (1790–1740 Ma, 1485–1425 Ma, 1095–1080 Ma), a GAD morphology gives better, or equally good, fits compared to the NTQ morphology. In addition, a stable NTQ that persisted for hundreds of millions of years is disfavored from a geodynamic perspective. Overall, mid-Proterozoic paleomagnetic directions are more consistent with a dipolar field. We suggest that the GAD remains the most parsimonious model to describe the morphology of the mid-Proterozoic magnetic field.
more »
« less
- PAR ID:
- 10557381
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geology
- Volume:
- 51
- Issue:
- 6
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 571 to 575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic fields overlaps temporally with atmospheric and oceanic oxygenation inferred from numerous geochemical proxies. This concurrence raises the question of whether enhanced H ion loss in a reduced magnetic field contributed to the oxygenation, ultimately allowing diversification of macroscopic and mobile animals of the Ediacara Fauna.more » « less
-
Abstract Mafic intrusions, lava flows, and felsic plutons in southwestern Laurentia have been hypothesized to be associated with the emplacement of a late Mesoproterozoic (Stenian Period) large igneous province. Improved geochronologic data resolve distinct episodes of mafic magmatism in the region. The ca. 1,098 Ma main pulse of southwestern Laurentia large igneous province (SWLLIP) magmatism is recorded by mafic intrusions across southeastern California to central Arizona. A younger episode of volcanism resulted in eruptions that formed the ca. 1,082 Ma Cardenas Basalt, which is the uppermost unit of the Unkar Group in the Grand Canyon. With the updated geochronological constraints, we develop new paleomagnetic data from mafic sills in the SWLLIP. Overlapping poles between the Death Valley sills and rocks of similar age in the Midcontinent Rift are inconsistent with large‐scale Cenozoic vertical axis rotations in Death Valley. We also develop a new paleomagnetic pole from the ca. 1,082 Ma Cardenas Basalt (pole longitude = 183.9°E, pole latitude = 15.9°N, = 7.4°,N = 18). The new paleomagnetic data are consistent with the pole path developed from time‐equivalent rocks of the Midcontinent Rift, supporting interpretations that changing pole positions are the result of rapid equatorward motion. These data add to the record of Laurentia's rapid motion from ca. 1,110 to 1,080 Ma that culminated in collisional Grenvillian orogenesis and the assembly of Rodinia.more » « less
-
Abstract In this study we focus on the investigation of the absolute intensity records of two volcanic subsequences, aiming to enrich the global paleointensity database for the last 5 Ma, which currently shows important dispersion. We present new absolute paleointensities obtained from the Plio‐Pleistocene volcanic sequence of Korkhi (Djavakheti Highland, Georgia) (41°27′31″N, 43°27′55″E). Korkhi is divided into two lava flow subsequences dated at 3.11 ± 0.20 Ma and 1.85 ± 0.08 Ma. Paleomagnetic directions previously published (Sánchez‐Moreno et al., 2018,https://doi.org/10.1029/2017GC007358) show a normal polarity in the lower Korkhi subsequence and a reverse‐to‐intermediate polarity in the upper Korkhi subsequence. The new paleointensity determinations are obtained through two different Thellier‐type protocols (Thellier‐Thellier and IZZI) and the corrected multispecimen method. We utilize different selection criteria and interpretation approaches (TTB, CCRIT, BiCEP and multimethod), and we make a critical evaluation on their application on complex magnetic behaviors, such as often found in volcanic rocks. Finally, we obtained a paleointensity of 70 μT in upper Korkhi and 14 paleointensities in lower Korkhi that vary between 5.2 and 37.2 μT. These results agree with a recently proposed non‐Geocentric Axial Dipole (GAD) hypothesis for the last ∼1.5 Ma (Cych et al., 2023,https://doi.org/10.1029/2023JB026492), and with low field strength for the 3–4 Ma.more » « less
-
The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon 207Pb/206Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deep-time tectonothermal history. Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the “Great Unconformity” (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by ~7.5-9 km of compacted Phanerozoic strata. Single grain 207Pb/206Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny. Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth.more » « less
An official website of the United States government

