skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Turbulent Pressure Heats Gas and Suppresses Star Formation in Galactic Bar Molecular Clouds
Abstract The Central Molecular Zone (CMZ) of the Milky Way is fed by gas inflows from the Galactic disk along almost radial trajectories aligned with the major axis of the Galactic bar. However, despite being fundamental to all processes in the nucleus of the Galaxy, these inflows have been studied significantly less than the CMZ itself. We present observations of various molecular lines between 215 and 230 GHz for 20 clouds with ∣ℓ∣ < 10°, which are candidates for clouds in the Galactic bar due to their warm temperatures and broad lines relative to typical Galactic disk clouds, using the Atacama Large Millimeter/submillimeter Array Atacama Compact Array. We measure gas temperatures, shocks, star formation rates, turbulent Mach numbers, and masses for these clouds. Although some clouds may be in the Galactic disk despite their atypical properties, nine clouds are likely associated with regions in the Galactic bar, and in these clouds, turbulent pressure is suppressing star formation. In clouds with no detected star formation, turbulence is the dominant heating mechanism, whereas photoelectric processes heat the star-forming clouds. We find that the ammonia (NH3) and formaldehyde (H2CO) temperatures probe different gas components, and in general, each transition appears to trace different molecular gas phases within the clouds. We also measure the CO-to-H2X-factor in the bar to be an order of magnitude lower than the typical Galactic value. These observations provide evidence that molecular clouds achieve CMZ-like properties before reaching the CMZ.  more » « less
Award ID(s):
2206511
PAR ID:
10557394
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
977
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 37
Size(s):
Article No. 37
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Atacama Large Millimeter/submillimeter Array Band 6 (1.3 mm) observations of dense cores in three massive molecular clouds within the central molecular zone (CMZ) of the Milky Way, including the Dust Ridge cloud e, Sgr C, and the 20 km s−1cloud, at a spatial resolution of 2000 au. Among the 834 cores identified from the 1.3 mm continuum, we constrain temperatures and linewidths of 253 cores using local thermodynamic equilibrium methods to fit the H2CO and/or CH3CN spectra. We determine their masses using the 1.3 mm dust continuum and derived temperatures, and then evaluate their virial parameters using the H2CO and/or CH3CN linewidths and construct the core mass functions (CMFs). We find that the contribution of external pressure is crucial for the virial equilibrium of the dense cores in the three clouds, which contrasts with the environment in the Galactic disk where dense cores are already bound, even without the contribution of external pressure. With our new temperature estimates we also find that the CMFs show a Salpeter-like slope in the high-mass (≳3–6M) end, a change from previous works. Combined with the possible top-heavy initial mass functions (IMFs) in the CMZ, our result suggests that gas accretion and further fragmentation may play important roles in transforming the CMF to the IMF. 
    more » « less
  2. Abstract The Milky Way is a barred spiral galaxy withbar lanesthat bring gas toward the Galactic center. Gas flowing along these bar lanes often overshoots, and instead of accreting onto the Central Molecular Zone (CMZ), it collides with the bar lane on the opposite side of the Galaxy. We observed G5, a cloud that we believe is the site of one such collision, near the Galactic center at (ℓ,b) = ( +5.4, −0.4) with the Atacama Large Millimeter/submillimeter Array/Atacama Compact Array. We took measurements of the spectral lines12COJ= 2 → 1,13COJ= 2 → 1, C18OJ= 2 → 1, H2COJ= 303→ 202, H2COJ= 322→ 221, CH3OHJ= 422→ 312, OCSJ= 18 → 17, and SiOJ= 5 → 4. We observed a velocity bridge between two clouds at ∼50 and ∼150 km s−1in our position–velocity diagram, which is direct evidence of a cloud–cloud collision. We measured an average gas temperature of ∼60 K in G5 using H2CO integrated-intensity line ratios. We observed that the12C/13C ratio in G5 is consistent with optically thin, or at most marginally optically thick12CO. We measured 1.5 × 10 19 cm 2 ( K km s 1 ) 1 for the local XCO, 10–20× less than the average Galactic value. G5 is strong direct observational evidence of gas overshooting the CMZ and colliding with a bar lane on the opposite side of the Galactic center. 
    more » « less
  3. Abstract We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l,b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of Hiiregions. We present12CO(1-0),13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1–2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment. 
    more » « less
  4. We present the highest-resolution (~0.04") Atacama Large Millimeter/submillimeter Array 1.3 mm continuum observations so far of three massive star-forming clumps in the Central Molecular Zone (CMZ), namely 20 km/s C1, 20 km/sC4, and Sgr C C4, which reveal prevalent compact millimeter emission. We extract the compact emission with astrodendro and identify a total of 199 fragments with a typical size of ∼370 au, which represent the first sample of candidates of protostellar envelopes and disks and kernels of prestellar cores in these clumps that are likely forming star clusters. Compared with the protoclusters in the Galactic disk, the three protoclusters display a higher level of hierarchical clustering, likely a result of the stronger turbulence in the CMZ clumps. Compared with the mini-starbursts in the CMZ, Sgr B2 M and N, the three protoclusters also show stronger subclustering in conjunction with a lack of massive fragments. The efficiency of high-mass star formation of the three protoclusters is on average 1 order of magnitude lower than that of Sgr B2 M and N, despite a similar overall efficiency of converting gas into stars. The lower efficiency of high-mass star formation in the three protoclusters is likely attributed to hierarchical cluster formation. 
    more » « less
  5. Abstract The Milky Way’s Central Molecular Zone (CMZ) is the largest concentration of dense molecular gas in the Galaxy, the structure of which is shaped by the complex interplay between Galactic-scale dynamics and extreme physical conditions. Understanding the 3D geometry of this gas is crucial, as it determines the locations of star formation and subsequent feedback. We present a catalog of clouds in the CMZ using Herschel data. Using archival data from the APEX and MOPRA CMZ surveys, we measure averaged kinematic properties of the clouds at 1 and 3 mm. We use archival ATCA data of the H2CO (11,0–11,1) 4.8 GHz line to search for absorption towards the clouds, and 4.85 GHz Green Bank Telescope (GBT)C-band data to measure the radio continuum emission. We measure the absorption against the continuum to provide new constraints for the line-of-sight positions of the clouds relative to the Galactic Center, and find a highly asymmetric distribution, with most clouds residing in front of the Galactic Center. The results are compared with different orbital models, and we introduce a revised toy model of a vertically oscillating closed elliptical orbit. We find that most models describe the position–position–velocity structure of the gas reasonably well, but find significant inconsistencies in all cases regarding the near versus far placement of individual clouds. Our results highlight that the CMZ is likely more complex than can be captured by these simple geometric models, along with the need for new data to provide further constraints on the true 3D structure of the CMZ. 
    more » « less