Abstract CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendN∝Ms, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andN–Mtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps. 
                        more » 
                        « less   
                    This content will become publicly available on March 13, 2026
                            
                            Subclustering and Star Formation Efficiency in Three Protoclusters in the Central Molecular Zone
                        
                    
    
            We present the highest-resolution (~0.04") Atacama Large Millimeter/submillimeter Array 1.3 mm continuum observations so far of three massive star-forming clumps in the Central Molecular Zone (CMZ), namely 20 km/s C1, 20 km/sC4, and Sgr C C4, which reveal prevalent compact millimeter emission. We extract the compact emission with astrodendro and identify a total of 199 fragments with a typical size of ∼370 au, which represent the first sample of candidates of protostellar envelopes and disks and kernels of prestellar cores in these clumps that are likely forming star clusters. Compared with the protoclusters in the Galactic disk, the three protoclusters display a higher level of hierarchical clustering, likely a result of the stronger turbulence in the CMZ clumps. Compared with the mini-starbursts in the CMZ, Sgr B2 M and N, the three protoclusters also show stronger subclustering in conjunction with a lack of massive fragments. The efficiency of high-mass star formation of the three protoclusters is on average 1 order of magnitude lower than that of Sgr B2 M and N, despite a similar overall efficiency of converting gas into stars. The lower efficiency of high-mass star formation in the three protoclusters is likely attributed to hierarchical cluster formation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10595388
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- ApJL
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 982
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20M⊙and surrounding envelope masses of ∼100M⊙. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9M⊙and associated massive (∼90M⊙) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows.more » « less
- 
            Abstract We present 500 and 700 au resolution 1 and 3 mm Atacama Large Millimeter/submillimeter Array observations, respectively, of protostellar cores in protoclusters Sagittarius B2 (Sgr B2) North (N) and Main (M), parts of the most actively star-forming cloud in our Galaxy. Previous lower-resolution (5000 au) 3 mm observations of this region detected ∼150 sources inferred to be young stellar objects (YSOs) withM> 8M⊙. With a 10-fold increase in resolution, we detect 371 sources at 3 mm and 218 sources in the smaller field of view at 1 mm. The sources seen at low resolution are observed to fragment into an average of two objects. About one-third of the observed sources fragment. Most of the sources we report are marginally resolved and are at least partially optically thick. We determine that the observed sources are most consistent with Stage 0/I YSOs, i.e., rotationally supported disks with an active protostar and an envelope, that are warmer than those observed in the solar neighborhood. We report source-counting-based inferred stellar mass and the star formation rate of the cloud: 2800M⊙and 0.0038M⊙yr−1for Sgr B2 N and 6900M⊙and 0.0093M⊙yr−1for Sgr B2 M, respectively.more » « less
- 
            Abstract We report the discovery of nine new hot molecular cores in the Deep South (DS) region of Sagittarius B2 using Atacama Large Millimeter/submillimeter Array Band 6 observations. We measure the rotational temperature of CH3OH and derive the physical conditions present within these cores and the hot core Sgr B2(S). The cores show heterogeneous temperature structure, with peak temperatures between 252 and 662 K. We find that the cores span a range of masses (203–4842M⊙) and radii (3587–9436 au). CH3OH abundances consistently increase with temperature across the sample. Our measurements show the DS hot cores are structurally similar to Galactic disk hot cores, with radii and temperature gradients that are comparable to sources in the disk. They also show shallower density gradients than disk hot cores, which may arise from the Central Molecular Zone’s higher density threshold for star formation. The hot cores have properties which are consistent with those of Sgr B2(N), with three associated with Class II CH3OH masers and one associated with an ultra-compact Hiiregion. Our sample nearly doubles the high-mass star-forming gas mass near Sgr B2(S) and suggests the region may be a younger, comparably massive counterpart to Sgr B2(N) and (M). The relationship between peak CH3OH abundance and rotational temperature traced by our sample and a selection of comparable hot cores is qualitatively consistent with predictions from chemical modeling. However, we observe constant peak abundances at higher temperatures (T≳ 250 K), which may indicate mechanisms for methanol survival that are not yet accounted for in models.more » « less
- 
            Context. The Milky Way’s central molecular zone (CMZ) has been measured to form stars ten times less efficiently than in the Galactic disk, based on emission from high-mass stars. However, the CMZ’s low-mass (⩽2M⊙) protostellar population, which accounts for most of the initial stellar mass budget and star formation rate (SFR), is poorly constrained observationally due to limited sensitivity and resolution. Aims. We aim to perform a cloud-wide census of the protostellar population in three massive CMZ clouds. Methods. We present the Dual-band Unified Exploration of three CMZ Clouds (DUET) survey, targeting the 20 km s−1cloud, Sgr C, and the dust ridge cloud “e” using the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 and 3 mm. The mosaicked observations achieve a comparable resolution of 0.′′2–0.′′3 (∼2000 au) and a sky coverage of 8.3–10.4 arcmin2, respectively. Results. We report 563 continuum sources at 1.3 mm and 330 at 3 mm, respectively, and a dual-band catalog with 450 continuum sources. These sources are marginally resolved at a resolution of 2000 au. We find a universal deviation (>70% of the source sample) from commonly used dust modified blackbody (MBB) models, characterized by either low spectral indices or low brightness temperatures. Conclusions. Three possible explanations are discussed for the deviation. (1) Optically thick class 0/I young stellar objects (YSOs) with a very small beam filling factor can lead to lower brightness temperatures than what MBB models predict. (2) Large dust grains with millimeter or centimeter in size have more significant self-scattering, and frequency-dependent albedo could therefore cause lower spectral indices. (3) Free-free emission over 30 μJy can severely contaminate dust emission and cause low spectral indices for milliJansky sources, although the number of massive protostars (embedded UCHIIregions) needed is infeasibly high for the normal stellar initial mass function. A reliable measurement of the SFR at low protostellar masses will require future work to distinguish between these possible explanations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
