skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Total Annual Aboveground Net Primary Productivity across grassland-shrubland ecotones at 3 sites in the Jornada Basin, 2006-ongoing
The objective of this ongoing study is to investigate how pulses of precipitation translate into pulses of plant aboveground net primary productivity (NPP) across grassland to shrubland ecotones in the northern Chihuahuan Desert. This dataset consists of annual aboveground net primary productivity estimates in three habitat vegetation zones (grassland, ecotone, and shrubland) at three grassland-to-shrubland ecotone sites in the Jornada Basin, Dona Ana County, New Mexico, USA. The annual ANPP estimates are derived from plant cover measurements (see methods). Due to its growth form, Yucca elata (YUEL) has been found to produce large errors in interyear biomass estimates. This data package contains annual ANPP estimates both with and without YUEL, but the authors strongly recommend using the non-YUEL estimates for most purposes. Data collection is ongoing with new observations in spring and fall of each year; data from both annual sampling times are required to estimate annual ANPP.  more » « less
Award ID(s):
2025166
PAR ID:
10557674
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this ongoing study is to investigate how pulses of precipitation translate into pulses of plant aboveground net primary productivity (NPP) across grassland to shrubland ecotones in the northern Chihuahuan Desert. This dataset consists of annual aboveground net primary productivity estimates by plant functional groups in three habitat vegetation zones (grassland, ecotone, and shrubland) at three grassland-to-shrubland ecotone sites in the Jornada Basin, Dona Ana County, New Mexico, USA. The annual ANPP estimates are derived from plant cover measurements (see methods). Due to its growth form, Yucca elata (YUEL), in the leaf succulent functional group, has been found to produce large errors in interyear biomass estimates. This data package separates biomass estimates for YUEL and non-YUEL leaf succulents so that users can decide whether to combine them or keep them separate. In general, the authors recommend against using the YUEL estimates for most purposes. Data collection is ongoing with new observations in spring and fall of each year; data from both annual sampling times are required to estimate annual ANPP. 
    more » « less
  2. The objective of this ongoing study is to investigate how pulses of precipitation translate into pulses of plant aboveground net primary productivity (ANPP) across grassland to shrubland ecotones in the northern Chihuahuan Desert. This dataset consists of ocular plant cover and height measurements to be used for estimating aboveground net primary in three habitat vegetation zones (grassland, ecotone, and shrubland) at three grassland-to-shrubland ecotone sites in the Jornada Basin, Dona Ana County, New Mexico, USA. Sampling is conducted twice a year: in the spring before the growing season and in the fall after the growing season. 
    more » « less
  3. {"Abstract":["The Monsoon Rainfall Manipulation Experiment (MRME) is to understand\n changes in ecosystem structure and function of a semiarid grassland\n caused by increased precipitation variability, which alters the\n pulses of soil moisture that drive primary productivity, community\n composition, and ecosystem functioning. The overarching hypothesis\n being tested is that changes in event size and variability will\n alter grassland productivity, ecosystem processes, and plant\n community dynamics. In particular, we predict that many small events\n will increase soil CO2 effluxes by stimulating microbial processes\n but not plant growth, whereas a small number of large events will\n increase aboveground net primary production (ANPP) and soil\n respiration by providing sufficient deep soil moisture to sustain\n plant growth for longer periods of time during the summer monsoon.\n To measure ANPP (i.e., the change in plant biomass, represented by\n stems, flowers, fruit and foliage, over time), the vegetation\n variables in this dataset, including species composition and the\n cover and height of individuals, are sampled twice yearly (spring\n and fall) at permanent 1m x 1m plots. The data from these plots is\n used to build regressions correlating biomass and volume via weights\n of select harvested species obtained in SEV157, "Net Primary\n Productivity (NPP) Weight Data." This biomass data is included\n in SEV206, "Seasonal Biomass and Seasonal and Annual NPP for\n the Monsoon (MRME) Study.""]} 
    more » « less
  4. This dataset contains cover and biomass data collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly. 
    more » « less
  5. Abstract Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad‐scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long‐term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one‐time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long‐term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change. 
    more » « less