Abstract We studied dispersion in Rhodamine laser dyes in the Kretschmann geometry and found (i) multi-branch “staircase” dispersion curves in singly doped and double doped PMMA polymer, (ii) emergence of the new dispersion “fork” branch, (iii) unparallel dispersion and coupling in the mixture of two different dyes, and (iv) effect of high dye concentration on strong coupling without metal.
more »
« less
Anomalous Dispersion in Coupled Surface Plasmons and Excitons
More Like this
-
-
Abstract The nonlinear Schrödinger (NLS) equation in one dimension is considered in the presence of an intensity-dependent dispersion term. We study bright solitary waves with smooth profiles that extend from the limit where the dependence of the dispersion coefficient on the wave intensity is negligible to the limit where the solitary wave becomes singular due to vanishing dispersion coefficient. We analyse and numerically explore the stability for such smooth solitary waves, showing with the help of numerical approximations that the family of solitary waves becomes unstable in an intermediate region between the two limits, while being stable in both limits. This bistability, which has also been observed in other NLS equations with generalized nonlinearity, brings about interesting dynamical transitions from one stable branch to another stable branch, which are explored in direct numerical simulations of the NLS equation with the intensity-dependent dispersion term.more » « less
-
We show that slow light in hyperbolic waveguides is linked to topological transitions in the dispersion diagram as the film thickness changes. The effect appears in symmetric planar structures with type II films, whose optical axis (OA) lies parallel to the waveguide interfaces. The transitions are mediated by elliptical mode branches that coalesce along the OA with anomalously ordered hyperbolic mode branches, resulting in a saddle point. When the thickness of the film increases further, the merged branch starts a transition to hyperbolic normally ordered modes propagating orthogonally to the OA. In this process, the saddle point transforms into a branch point featuring slow light for a broad range of thicknesses, and a new branch of ghost waves appears.more » « less
-
The Triangulum Extended (TREX) Survey: The Stellar Disk Dynamics of M33 as a Function of Stellar AgeAbstract Triangulum (M33) is a low-mass, relatively undisturbed spiral galaxy that offers a new regime in which to test models of dynamical heating. In spite of its proximity, M33's dynamical heating history has not yet been well-constrained. In this work, we present the TREX Survey, the largest stellar spectroscopic survey across the disk of M33. We present the stellar disk kinematics as a function of age to study the past and ongoing dynamical heating of M33. We measure line-of-sight velocities for ∼4500 disk stars. Using a subset, we divide the stars into broad age bins using Hubble Space Telescope and Canada–France–Hawaii Telescope photometric catalogs: massive main-sequence stars and helium-burning stars (∼80 Myr), intermediate-mass asymptotic branch stars (∼1 Gyr), and low-mass red giant branch stars (∼4 Gyr). We compare the stellar disk dynamics to that of the gas using existing Hi, CO, and Hαkinematics. We find that the disk of M33 has relatively low-velocity dispersion (∼16 km s−1), and unlike in the Milky Way and Andromeda galaxies, there is no strong trend in velocity dispersion as a function of stellar age. The youngest disk stars are as dynamically hot as the oldest disk stars and are dynamically hotter than predicted by most M33-like low-mass simulated analogs in Illustris. The velocity dispersion of the young stars is highly structured, with the large velocity dispersion fairly localized. The cause of this high-velocity dispersion is not evident from the observations and simulated analogs presented here.more » « less
-
Abstract We use the results of a survey for low-surface-gravity stars in Galactic (and LMC) globular clusters to show that “yellow” post-asymptotic-branch (yPAGB) stars are likely to be excellent extragalactic standard candles, capable of producing distances to early-type galaxies that are accurate to a couple of percent. We show that the mean bolometric magnitude of the 10 yPAGB stars in globular clusters is 〈 M bol 〉 = −3.38 ± 0.03, a value that is ∼0.2 mag brighter than that predicted from the latest post-horizontal-branch evolutionary tracks. More importantly, we show that the observed dispersion in the distribution is only 0.10 mag, i.e., better than the scatter for individual Cepheids. We describe the physics that can produce such a small dispersion and show that, if one restricts surveys to the color range 0.0 ≲ ( B − V ) 0 ≲ 0.5, then samples of nonvariable yPAGB stars can be identified quite easily with a minimum of contamination. The extremely bright absolute V magnitudes of these stars (〈 M V 〉 = −3.37) make them, by far, the visually brightest objects in old stellar populations and ideal Population II standard candles for measurements out to ∼10 Mpc with current instrumentation. A Hubble Space Telescope survey in the halos of galaxies in the M81 and Sculptor groups could therefore serve as an effective cross-check on both the Cepheid and tip-of-the-red-giant-branch distance scales.more » « less
An official website of the United States government

