This content will become publicly available on May 22, 2026
                            
                            Anomalous dispersion in coupled surface plasmons and excitons
                        
                    
    
            Abstract We studied dispersion in Rhodamine laser dyes in the Kretschmann geometry and found (i) multi-branch “staircase” dispersion curves in singly doped and double doped PMMA polymer, (ii) emergence of the new dispersion “fork” branch, (iii) unparallel dispersion and coupling in the mixture of two different dyes, and (iv) effect of high dye concentration on strong coupling without metal. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10612514
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 14
- Issue:
- 13
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 2251 to 2258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Abstract The effect of vortex‐induced mechanical stresses on the fluorescent properties of dye‐containing poly(ethylene glycol)‐block‐poly(lactic acid) (PEG‐b‐PLA) block copolymer micelles has been investigated. PEG‐b‐PLA block copolymer micelles containing fluorescent dyes, 3,3′‐dioctadecyloxacarbocyanine perchlorate (DiO) and/or 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiI), are prepared by a simple one‐step procedure that involves the self‐assembly of block copolymers and spontaneous incorporation of hydrophobic dyes into the core of the micelles. Upon vortexing, the micelle dispersion samples showed a decrease in fluorescence intensity in a rotational speed‐ and time‐dependent manner. The results demonstrated that the vortexing can alter the fluorescent properties of the dye‐containing PEG‐b‐PLA block copolymer micelle dispersion samples, suggesting the potential utility of block copolymer micelles as a mechanical stress‐responsive nanomaterial.more » « less
- 
            Abstract Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.more » « less
- 
            Abstract The nonlinear Schrödinger (NLS) equation in one dimension is considered in the presence of an intensity-dependent dispersion term. We study bright solitary waves with smooth profiles that extend from the limit where the dependence of the dispersion coefficient on the wave intensity is negligible to the limit where the solitary wave becomes singular due to vanishing dispersion coefficient. We analyse and numerically explore the stability for such smooth solitary waves, showing with the help of numerical approximations that the family of solitary waves becomes unstable in an intermediate region between the two limits, while being stable in both limits. This bistability, which has also been observed in other NLS equations with generalized nonlinearity, brings about interesting dynamical transitions from one stable branch to another stable branch, which are explored in direct numerical simulations of the NLS equation with the intensity-dependent dispersion term.more » « less
- 
            We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton–plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations of dye (Rhodamine 590, Rh590) in the polymer (Poly(methyl methacrylate), PMMA). At the same time, highly unusual multi-segment “staircase-like” dispersion curves were observed at extra-large dye concentrations, also in agreement with the simple theoretical model predicting large, small, and negative group velocities featured by different polariton branches. In a separate experiment, we measured angular dependent emission of Rh590 dye and obtained the dispersion curves consisting of two branches, one nearly resembling the SPP dispersion found in reflection and the second one almost horizontal. The results of our study pave the road to unparalleled fundamental science and future applications of weak and strong light—matter interactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
