skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bulk reconstruction from generalized free fields
A<sc>bstract</sc> We propose a generalized protocol for constructing a dual free bulk theory from any boundary model of generalized free fields (GFFs). To construct the bulk operators, we employ a linear ansatz similar to the Hamilton-Kabat-Liftschytz-Lowe (HKLL) construction. However, unlike the HKLL construction, our protocol relies only on boundary data with no presupposed form for the bulk equations of motion, so our reconstructed bulk is fully emergent. For a (1+1)d bulk, imposing the bulk operator algebra as well as a causal structure is sufficient to determine the bulk operators and dynamics uniquely up to an unimportant local basis choice. We study the bulk construction for several two-sided SYK models with and without coupling between the two sides, and find good agreement with known results in the low-temperature conformal limit. In particular, we find bulk features consistent with the presence of a black hole horizon for the TFD state, and characterize the infalling fermion modes. We are also able to extract bulk quantities such as the curvature and bulk state correlators in terms of boundary quantities. In the presence of coupling between the two SYK models, we are able to observe evidence of the shockwave geometry and the traversable wormhole geometry using the two-sided mutual information between the reconstructed bulk operators. Our results show evidence that features of the geometric bulk can survive away from the low temperature conformal limit. Furthermore, the generality of the protocol allows it to be applied to other boundary theories with no canonical holographic bulk.  more » « less
Award ID(s):
2111998
PAR ID:
10557740
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We argue that at finite energies, double-scaled SYK has a semiclassical approximation controlled by a couplingλin which all observables are governed by a non-trivial saddle point. The Liouville description of double-scaled SYK suggests that the correlation functions define a geometry in a two-dimensional bulk, with the 2-point function describing the metric. For small coupling, the fluctuations are highly suppressed, and the bulk describes a rigid (A)dS spacetime. As the coupling increases, the fluctuations become stronger. We study the correction to the curvature of the bulk geometry induced by these fluctuations. We find that as we go deeper into the bulk the curvature increases and that the theory eventually becomes strongly coupled. In general, the curvature is related to energy fluctuations in light operators. We also compute the entanglement entropy of partially entangled thermal states in the semiclassical limit. 
    more » « less
  2. A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter. 
    more » « less
  3. A<sc>bstract</sc> We study the entanglement phase structure of a holographic boundary conformal field theory (BCFT) in a two-dimensional black hole background. The bulk dual is the AdS3black string geometry with a Karch-Randall brane. We compute the subregion entanglement entropy of various two-sided bipartitions to elucidate the phase space where a Page curve exists in this setup. We do fully analytical computations on both the gravity side and the field theory side and demonstrate that the results precisely match. We discuss the entanglement phase structure describing where a Page curve exists in this geometry in the context of these analytical results. This is a useful model to study entanglement entropy for quantum field theory on a curved background. 
    more » « less
  4. A<sc>bstract</sc> We introduce and study a candidate gravity dual to the double scaled SYK model in the form of an exactly soluble 2D de Sitter gravity model consisting of two spacelike Liouville CFTs with complex central charge adding up toc++c= 26. In [1] it was shown that the two-point function of physical operators in a doubled SYK model matches in the semi-classical limit with the Green’s function of a massive scalar field in 3D de Sitter space. As further evidence of the duality, we adapt a result from Zamolodchikov to compute the boundary two-point function of the 2D Liouville-de Sitter gravity model on a disk and find that it reproduces the exact DSSYK two-point function to all orders inλ=p2/N. We describe how the 2D Liouville-de Sitter gravity model arises from quantizing 3D de Sitter gravity. 
    more » « less
  5. A<sc>bstract</sc> We study classical wormhole solutions in 3D gravity with end-of-the-world (EOW) branes, conical defects, kinks, and punctures. These solutions compute statistical averages of an ensemble of boundary conformal field theories (BCFTs) related to universal asymptotics of OPE data extracted from the 2D conformal bootstrap. Conical defects connect BCFT bulk operators; branes join BCFT boundary intervals with identical boundary conditions; kinks (1D defects along branes) link BCFT boundary operators; and punctures (0D defects) are endpoints where conical defects terminate on branes. We provide evidence for a correspondence between the gravity theory and the ensemble. In particular, the agreement of theg-function dependence results from an underlying topological aspect of the on-shell EOW brane action, from which a BCFT analog of the Schlenker-Witten theorem also follows. 
    more » « less