skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiclassical geometry in double-scaled SYK
A<sc>bstract</sc> We argue that at finite energies, double-scaled SYK has a semiclassical approximation controlled by a couplingλin which all observables are governed by a non-trivial saddle point. The Liouville description of double-scaled SYK suggests that the correlation functions define a geometry in a two-dimensional bulk, with the 2-point function describing the metric. For small coupling, the fluctuations are highly suppressed, and the bulk describes a rigid (A)dS spacetime. As the coupling increases, the fluctuations become stronger. We study the correction to the curvature of the bulk geometry induced by these fluctuations. We find that as we go deeper into the bulk the curvature increases and that the theory eventually becomes strongly coupled. In general, the curvature is related to energy fluctuations in light operators. We also compute the entanglement entropy of partially entangled thermal states in the semiclassical limit.  more » « less
Award ID(s):
2209997
PAR ID:
10522242
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> The p-body SYK model at finite temperature exhibits submaximal chaos and contains stringy-like corrections to the dual JT gravity. It can be solved exactly in two different limits: “large p” SYK 1 ≪p≪Nand “double-scaled” SYKN,p → ∞withλ= 2p2/Nfixed. We clarify the relation between the two. Starting from the exact results in the double-scaled limit, we derive several observables in the large p limit. We compute euclidean 2n-point correlators and out-of-time-order four-point function at long lorentzian times. To compute the correlators we find the relevant asymptototics of the$$ {\mathcal{U}}_q\left( su\left(1,1\right)\right) $$ U q su 1 1 6j-symbol. 
    more » « less
  2. A<sc>bstract</sc> We study the partition function of 3D de Sitter gravity defined as the trace over the Hilbert space obtained by quantizing the phase space of non-rotating Schwarzschild-de Sitter spacetime. Motivated by the correspondence with double scaled SYK, we identify the Hamiltonian with the gravitational Wilson-line that measures the conical deficit angle. We express the Hamiltonian in terms of canonical variables and find that it leads to the exact same chord rules and energy spectrum as the double scaled SYK model. We use the obtained match to compute the partition function and scalar two-point function in 3D de Sitter gravity. 
    more » « less
  3. A<sc>bstract</sc> We introduce and study a candidate gravity dual to the double scaled SYK model in the form of an exactly soluble 2D de Sitter gravity model consisting of two spacelike Liouville CFTs with complex central charge adding up toc++c= 26. In [1] it was shown that the two-point function of physical operators in a doubled SYK model matches in the semi-classical limit with the Green’s function of a massive scalar field in 3D de Sitter space. As further evidence of the duality, we adapt a result from Zamolodchikov to compute the boundary two-point function of the 2D Liouville-de Sitter gravity model on a disk and find that it reproduces the exact DSSYK two-point function to all orders inλ=p2/N. We describe how the 2D Liouville-de Sitter gravity model arises from quantizing 3D de Sitter gravity. 
    more » « less
  4. A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ O that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy. 
    more » « less
  5. A<sc>bstract</sc> We propose a generalized protocol for constructing a dual free bulk theory from any boundary model of generalized free fields (GFFs). To construct the bulk operators, we employ a linear ansatz similar to the Hamilton-Kabat-Liftschytz-Lowe (HKLL) construction. However, unlike the HKLL construction, our protocol relies only on boundary data with no presupposed form for the bulk equations of motion, so our reconstructed bulk is fully emergent. For a (1+1)d bulk, imposing the bulk operator algebra as well as a causal structure is sufficient to determine the bulk operators and dynamics uniquely up to an unimportant local basis choice. We study the bulk construction for several two-sided SYK models with and without coupling between the two sides, and find good agreement with known results in the low-temperature conformal limit. In particular, we find bulk features consistent with the presence of a black hole horizon for the TFD state, and characterize the infalling fermion modes. We are also able to extract bulk quantities such as the curvature and bulk state correlators in terms of boundary quantities. In the presence of coupling between the two SYK models, we are able to observe evidence of the shockwave geometry and the traversable wormhole geometry using the two-sided mutual information between the reconstructed bulk operators. Our results show evidence that features of the geometric bulk can survive away from the low temperature conformal limit. Furthermore, the generality of the protocol allows it to be applied to other boundary theories with no canonical holographic bulk. 
    more » « less