Abstract We present an analysis of helium ion (He+) fraction in an altitude range from about 400 km to around 700 km and its relationship to the ion temperature (Ti) and the vertical ion drift under solar maximum conditions. The data were obtained from the Arecibo incoherent scatter radar during 27 September to 1 October 2014 and 16–20 December 2014. The large He+fraction (>10%) lasts 15 hr per day during the winter solstice, which is 3 times larger than during fall equinox. This difference is caused by the more persistent downward ion drift in the winter. The incremental He+fraction and incrementalTiare well anticorrelated, and the anticorrelation is more prominent during the daytime. These characteristics are associated with whether O+and He+are in diffusive equilibrium. During nighttime, we show that the vertical ion flow is downward causing the He+layer peak altitude to move to an altitude of 500 km from above 650 km. According to our analysis, He+fraction has to be larger than two thirds for diffusive equilibrium to occur above the He+peak height. Therefore, above the He+peak altitude, O+and He+cannot be in diffusive equilibrium with He+being the minor species. The vertical ion flow plays an important role in determining the diurnal variation and seasonal difference of He+distribution and whether He+is in a diffusive equilibrium with O+. 
                        more » 
                        « less   
                    This content will become publicly available on November 11, 2025
                            
                            Measurements of F 1 ‐ Region Ionosphere State Variables at Arecibo Through Quasi Height‐Independent Exhaustive Fittings of the Incoherent Scatter Ion‐Line Spectra
                        
                    
    
            Abstract We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F1‐region for molecular ion fraction (fm), ion temperature (Ti), and electron temperature (Te). The commonly used “full profile” approach for F1‐region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height forfm,Ti,Te, and ion velocity (Vi) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fittingfm,Ti, andTewithout constraints requires Doppler shift to be accurately determined and the ISS signal‐to‐noise ratio higher than the full‐profile method, simulations show thatTi,Te, andfmcan be recovered within a few percent accuracy with a moderate signal‐to‐noise ratio. We apply the exhaustive search approach to the Arecibo high‐resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height‐independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high‐resolution measurements ofTi,Te,fm,Vi, and electron concentration (Ne) in our approach open new opportunities for synergistic studies of the F1‐region dynamics and chemistry. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152109
- PAR ID:
- 10557814
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Millstone Hill incoherent scatter (IS) radar is used to measure spectra close to perpendicular to the Earth's magnetic field, and the data are fit to three different forward models to estimate ionospheric temperatures. IS spectra measured close to perpendicular to the magnetic field are heavily influenced by Coulomb collisions, and the temperature estimates are sensitive to the collision operator used in the forward model. The standard theoretical model for IS radar spectra treats Coulomb collisions as a velocity independent Brownian motion process. This gives estimates ofTe/Ti < 1 when fitting the measured spectra for aspect angles up to 3.6°, which is a physically unrealistic result. The numerical forward model from Milla and Kudeki (2011,https://doi.org/10.1109/TGRS.2010.2057253) incorporates single‐particle simulations of velocity‐dependent Coulomb collisions into a linear framework, and when applied to the Millstone data, it predicts the sameTe/Tiratios as the Brownian theory. The new approach is a nonlinear particle‐in‐cell (PIC) code that includes velocity‐dependent Coulomb collisions which produce significantly more collisional and nonlinear Landau damping of the measured ion‐acoustic wave than the other forward models. When applied to the radar data, the increased damping in the PIC simulations will result in more physically realistic estimates ofTe/Ti. This new approach has the greatest impact for the largest measured ionospheric densities and the lowest radar frequencies. The new approach should enable IS radars to obtain accurate measurements of plasma temperatures at times and locations where they currently cannot.more » « less
- 
            Abstract Competing theories exist for the generation mechanism of auroral medium‐frequency burst (MFB). In an effort to constrain MFB source heights, this study analyzes 33 events in which MFB and auroral 2fceroar co‐occurred at Sondrestrom, Greenland. Using measurements from an array of receiving antennas, direction‐of‐arrival calculations indicate that in a given co‐occurrence, the elevation angle of MFB typically is higher than that of roar. Ray tracing is used to determine source heights of the MFB signals. Density profiles are obtained from the International Reference Ionosphere (IRI) and shifted in magnitude until each event's roar signals originate at heights where the frequency‐matching condition for 2fceroar generation is satisfied. This shifting method is validated using density measurements from the Sondrestrom incoherent scatter radar (ISR) facility for the two events with available ISR data. After shifting, ray tracing demonstrates that in 25 of the 33 events, burst originates at a height of about 200 km, lower than the typical altitude of peak electron density. However, ISR measurements show that the density profile is enhanced at low altitudes while MFB is observed, peaking in theEregion rather than theFregion. This finding implies that the MFB sources at 200 km are on the topside of the density peak, in a region of downward pointing density gradient, in qualitative agreement with the mechanism of MFB generation by Langmuir waves in the topside ionosphere. These results also suggest a new method of estimating density in the polar cap using roar signals to calibrate IRI profiles.more » « less
- 
            We present the first simultaneous observations of a traveling ionosphere wave (TID) event, measuring electron concentration (Ne), vertical plasma drift (Vz), and ion and electron temperatures (Ti, Te) using the Arecibo incoherent scatter radar. A TID with a period of 135 min was evident in all four state variables in the thermosphere. The amplitudes of Vz and relative Ti fluctuations show only small height variations from 200 to 500 km and their vertical wavelengths increase with altitude. The Te fluctuation shows different characteristics from EISCAT in both phase and amplitude. When the geomagnetic dip angle is 45°, half of the driving gravity wave’s (GW’s) equatorward velocity is mapped to Vz. This meridional-to-vertical velocity coupling amplifies GW’s effect in Ne through vertical transport. The amplifying and anisotropic effects of the geomagnetic field explain the ubiquitous presence of TIDs and their preferred equatorward propagation direction in the geomagnetic mid-latitudes, as well as the midnight collapse phenomenon observed at Arecibo.more » « less
- 
            Abstract E‐region models have traditionally underestimated the ionospheric electron density. We believe that this deficiency can be remedied by using high‐resolution photoabsorption and photoionization cross sections in the models. Deep dips in the cross sections allow solar radiation to penetrate deeper into the E‐region producing additional ionization. To validate our concept, we perform a study of model electron density profiles (EDPs) calculated using the Atmospheric Ultraviolet Radiance Integrated Code (AURIC; D. Strickland et al., 1999,https://doi.org/10.1016/s0022-4073(98)00098-3) in the E‐region of the terrestrial ionosphere. We compare AURIC model outputs using new high‐resolution photoionization and photoabsorption cross sections, and solar spectral irradiances during low solar activity with incoherent scatter radar (ISR) measurements from the Arecibo and Millstone Hills observatories, Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC‐1) observations, and outputs from empirical models (IRI‐2016 and FIRI‐2018). AURIC results utilizing the new high‐resolution cross sections reveal a significant difference to model outputs calculated with the low‐resolution cross sections currently used. Analysis of AURIC EDPs using the new high‐resolution data indicate fair agreement with ISR measurements obtained at various times at Arecibo but very good agreement with Millstone Hills ISR observations from ∼96–140 km. However, discrepancies in the altitude of the E‐region peak persist. High‐resolution AURIC calculations are in agreement with COSMIC‐1 observations and IRI‐2016 model outputs between ∼105 and 140 km while FIRI‐2018 outputs underestimate the EDP in this region. Overall, AURIC modeling shows increased E‐region electron densities when utilizing high‐resolution cross sections and high‐resolution solar irradiances, and are likely to be the key to resolving the long standing data‐model discrepancies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
