skip to main content


Search for: All records

Award ID contains: 2152109

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F1‐region for molecular ion fraction (fm), ion temperature (Ti), and electron temperature (Te). The commonly used “full profile” approach for F1‐region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height forfm,Ti,Te, and ion velocity (Vi) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fittingfm,Ti, andTewithout constraints requires Doppler shift to be accurately determined and the ISS signal‐to‐noise ratio higher than the full‐profile method, simulations show thatTi,Te, andfmcan be recovered within a few percent accuracy with a moderate signal‐to‐noise ratio. We apply the exhaustive search approach to the Arecibo high‐resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height‐independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high‐resolution measurements ofTi,Te,fm,Vi, and electron concentration (Ne) in our approach open new opportunities for synergistic studies of the F1‐region dynamics and chemistry.

     
    more » « less
  2. ABSTRACT

    This work presents the result of sporadic meteor radiant density distribution using the Arecibo 430 MHz incoherent scatter radar (ISR) located in Puerto Rico for the first time. Although numerous meteor studies have been carried out using the Arecibo ISR, meteoroid radiant density distribution has remained a mystery as the Arecibo radar cannot measure vector velocity. A numerical orbital simulation algorithm using dynamic programming and stochastic gradient descent is designed to solve the sporadic meteoroid radiant density and the corresponding speed distributions of the meteors observed at Arecibo. The data set for the algorithm comprises over 250 000 meteors from Arecibo observations between 2009 and 2017. Five of the six recognized sporadic meteor sources can be identified from our result. There is no clearly identifiable South Apex source. Instead, there is a broad distribution between +/−30° ecliptic latitude, with the peak density located in the North Apex direction. Our results also indicate that the Arecibo radar is not sensitive to meteors travelling straight into or perpendicular to the antenna beam but is most sensitive to meteors with an arrival angle between 30° and 60°. Our analysis indicates that about 75 per cent of meteoroids observed by the Arecibo radar travel in prograde orbits when the impact probability is considered. Most of the retrograde meteoroids travel in inclined low-eccentricity orbits.

     
    more » « less
  3. Abstract

    A novel computer vision‐based meteor head echo detection algorithm is developed to study meteor fluxes and their physical properties, including initial range, range coverage, and radial velocity. The proposed Algorithm for Head Echo Automatic Detection (AHEAD) comprises a feature extraction function and a Convolutional Neural Network (CNN). The former is tailored to identify meteor head echoes, and then a CNN is employed to remove false alarms. In the testing of meteor data collected with the Jicamarca 50 MHz incoherent scatter radar, the new algorithm detects over 180 meteors per minute at dawn, which is 2 to 10 times more sensitive than prior manual or algorithmic approaches, with a false alarm rate less than 1 percent. The present work lays the foundation of developing a fully automatic AI‐meteor package that detects, analyzes, and distinguishes among many types of meteor echoes. Furthermore, although initially evaluated for meteor data collected with the Jicamarca VHF incoherent radar, the new algorithm is generic enough that can be applied to other facilities with minor modifications. The CNN removes up to 98 percent of false alarms according to the testing set. We also present and discuss the physical characteristics of meteors detected with AHEAD, including flux rate, initial range, line of sight velocity, Signal‐to‐Noise Ratio, and noise characteristics. Our results indicate that stronger meteor echoes are detected at a slightly lower altitude and lower radial velocity than other meteors.

     
    more » « less
  4. We present the first simultaneous observations of a traveling ionosphere wave (TID) event, measuring electron concentration (Ne), vertical plasma drift (Vz), and ion and electron temperatures (Ti, Te) using the Arecibo incoherent scatter radar. A TID with a period of 135 min was evident in all four state variables in the thermosphere. The amplitudes of Vz and relative Ti fluctuations show only small height variations from 200 to 500 km and their vertical wavelengths increase with altitude. The Te fluctuation shows different characteristics from EISCAT in both phase and amplitude. When the geomagnetic dip angle is 45°, half of the driving gravity wave’s (GW’s) equatorward velocity is mapped to Vz. This meridional-to-vertical velocity coupling amplifies GW’s effect in Ne through vertical transport. The amplifying and anisotropic effects of the geomagnetic field explain the ubiquitous presence of TIDs and their preferred equatorward propagation direction in the geomagnetic mid-latitudes, as well as the midnight collapse phenomenon observed at Arecibo.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. A basic tenet of linear invariant systems is that they are sufficiently described by either the impulse response function or the frequency transfer function. This implies that we can always obtain one from the other. However, when the transfer function contains uncanceled poles, the impulse function cannot be obtained by the standard inverse Fourier transform method. Specifically, when the input consists of a uniform train of pulses and the output sequence has a finite duration, the transfer function contains multiple poles on the unit cycle. We show how the impulse function can be obtained from the frequency transfer function for such marginally stable systems. We discuss three interesting discrete Fourier transform pairs that are used in demonstrating the equivalence of the impulse response and transfer functions for such systems. The Fourier transform pairs can be used to yield various trigonometric sums involving sin⁡πk/Nsin⁡πLk/N, where k is the integer summing variable and N is a multiple of integer L.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  6. Abstract. We discuss robust estimations for the variance of normally distributed random variables in the presence of interference. The robust estimators are based on either ranking or the geometric mean. For the interference models used, estimators based on the geometric mean outperform the rank-based ones in both mitigating the effect of interference and reducing the statistical error when there is no interference. One reason for this is that estimators using the geometric mean do not suffer from the “heavy tail” phenomenon like the rank-based estimators do. The ratio of the standard deviation over the mean of the power random variable is sensitive to interference. It can thus be used as a criterion to combine the sample mean with a robust estimator to form a hybrid estimator. We apply the estimators to the Arecibo incoherent scatter radar signals to determine the total power and Doppler velocities in the ionospheric E-region altitudes. Although all the robust estimators selected deal with light contamination well, the hybrid estimator is most effective in all circumstances. It performs well in suppressing heavy contamination and is as efficient as the sample mean in reducing the statistical error. Accurate incoherent scatter radar measurements, especially at nighttime and at E-region altitudes, can improve studies of ionospheric dynamics and composition.

     
    more » « less
  7. We present an analysis of 6 h oscillations in the thermosphere ranging from 150 km to 400 km. The analysis applies 134 days of data from an incoherent scatter radar located at Arecibo Observatory (18.3°N, 66.7°W) from 1984 to 2015. To our knowledge, the climatological and seasonal characteristics of the 6 h oscillations in the thermosphere were investigated for the first time over Arecibo. The climatological mean amplitude of the 6 h oscillation in the thermosphere is about 11 m/s, and it increases slowly with altitude above 225 km. The climatological mean amplitude of the 6 h oscillation is comparable with semidiurnal and terdiurnal tides at Arecibo above 250 km. The climatological mean phase exhibits limited vertical variation. The 6 h oscillation is the most prominent in autumn, with amplitudes reaching around 20 m/s compared to approximately 10 m/s in other seasons. The phase structure in all seasons exhibits weak vertical variations. The responses of the thermospheric 6 h oscillation to solar and geomagnetic activities are also analyzed in this study. Our results indicate that at low latitude, solar activities have a small impact on the variation in the thermospheric 6 h oscillation, while it appears that the amplitude of the 6 h oscillation increases with increasing geomagnetic activity. Above 250 km, the amplitude of the 6 h oscillation reaches ~20 m/s during strong geomagnetic activity, which is almost twice of that occurring during weak geomagnetic activity.

     
    more » « less
  8. We present a machine-learning approach to detect and analyze meteor echoes (MADAME), which is a radar data processing workflow featuring advanced machine-learning techniques using both supervised and unsupervised learning. Our results demonstrate that YOLOv4, a convolutional neural network (CNN)-based one-stage object detection model, performs remarkably well in detecting and identifying meteor head and trail echoes within processed radar signals. The detector can identify more than 80 echoes per minute in the testing data obtained from the Jicamarca high power large aperture (HPLA) radar. MADAME is also capable of autonomously processing data in an interferometer mode, as well as determining the target’s radiant source and vector velocity. In the testing data, the Eta Aquarids meteor shower could be clearly identified from the meteor radiant source distribution analyzed automatically by MADAME, thereby demonstrating the proposed algorithm’s functionality. In addition, MADAME found that about 50 percent of the meteors were traveling in inclined and near-inclined circular orbits. Furthermore, meteor head echoes with a trail are more likely to originate from shower meteor sources. Our results highlight the capability of advanced machine-learning techniques in radar signal processing, providing an efficient and powerful tool to facilitate future and new meteor research.

     
    more » « less