skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Centrally symmetric analytic plane domains are spectrally determined in this class
We prove that, under some generic non-degeneracy assumptions, real analytic centrally symmetric plane domains are determined by their Dirichlet (resp. Neumann) spectra. We prove that the conditions are open-dense for real analytic strictly convex domains. One step is to use a Maslov index calculation to show that the second derivative of the defining function of a centrally symmetric domain at the endpoints of a bouncing ball orbit is a spectral invariant. This is also true for up-down symmetric domains, removing an assumption from the proof in that case.  more » « less
Award ID(s):
1810747
PAR ID:
10558112
Author(s) / Creator(s):
;
Publisher / Repository:
Amer. Math. Soc.
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove a complex polynomial plank covering theorem for not necessarily homogeneous polynomials. As the consequence of this result, we extend the complex plank theorem of Ball to the case of planks that are not necessarily centrally symmetric and not necessarily round. We also prove a weaker version of the spherical polynomial plank covering conjecture for planks of different widths. 
    more » « less
  2. For domains in R d \mathbb {R}^d , d ≥ 2 d\geq 2 , we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 p>0 and the supremum over all starting points of the p p -moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p p and that for p ≥ 1 p \geq 1 , the upper bound is asymptotically sharp as d → ∞ d\to \infty . For all p > 0 p>0 , we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal. 
    more » « less
  3. Abstract We prove that, for a compact, 3-dimensional, real-analytic, Lorentzian manifold, if the group of conformal transformations does not preserve any metric in the conformal class, then the metric is conformally flat. 
    more » « less
  4. Czumaj, Artur Dawar (Ed.)
    We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix A. Each symmetric matrix A defines a graph homomorphism function Z A (·), also known as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of Z A (·) for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric A, either Z A (G) is in polynomial time for all graphs G, or it is #P-hard for bounded degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [12] for Z A (·) also holds for simple graphs, where A is any real symmetric matrix. 
    more » « less
  5. null (Ed.)
    A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual. 
    more » « less