skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Investigation of a Series of Small Molecules as Lead Compounds for Lysyl hydroxylase-2 (LH2) Inhibition
The catalytic function of Lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported to have intramolecular O2 tunnels, which aid in transporting one of the required co-substrates into the active site. While LH2 can be a promising target to combat these diseases, efficacious inhibitors are still lacking. We have used computational simulations to investigate a series of forty-four small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the existence of several intra-molecular tunnels. The lengths of the calculated O2-transporting tunnels in holoenzymes are relatively longer than the apoenzyme suggesting that the ligands may affect the enzyme's structure and possibly block (at least partially) the tunnels. The sequence alignment analysis between LH enzymes from different organisms shows that all the amino acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results suggest that the enolate form of diketone compounds establishes stronger interactions with the Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl and pyridinyl enhances the interaction with various residues around the active site. Our results provide information about possible leads for further LH2 inhibition design and development.  more » « less
Award ID(s):
2117247
PAR ID:
10558183
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO’) to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion. 
    more » « less
  2. Cleavage of aromatic carbon–chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (Chd T ), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. Chd T forms a “head-to-tail” homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His 117 , His 257 , Asp 116 , Asn 216 , and a water/hydroxide as ligands. A conserved His residue, His 114 , is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π–π interaction with Trp 227 . On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation. 
    more » « less
  3. The redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands. Quinol is capable of being reversibly oxidized by either one or two electrons to semiquinone or para-quinone, respectively. Functionally, quinol behaves much differently than phenol, even though the pKa values of the first O−H bonds are nearly identical. The redox activity of the quinol in the polydentate ligand can augment the abilities of bound redox-active metals to catalyze the dismutation of O2−• and H2O2. These complexes can thereby act as high-performing functional mimics of superoxide dismutase (SOD) and catalase (CAT) enzymes, which exclusively use redox-active metals to transfer electrons to and from these reactive oxygen species (ROS). The quinols augment the activity of redox-active metals by stabilizing higher-valent metal species, providing alternative redox partners for the oxidation and reduction of reactive oxygen species, and protecting the catalyst from destructive side reactions. The covalently attached quinols can even enable redox-inactive Zn(II) to catalyze the degradation of ROS. With the Zn(II)-containing SOD and CAT mimics, the organic redox couple entirely substitutes for the inorganic redox couples used by the enzymes. The ligand structure modulates the antioxidant activity, and thus far, we have found that compounds that have poor or negligible SOD activity can nonetheless behave as efficient CAT mimics. Quinol-containing ligands have also been used to prepare electrocatalysts for dioxygen reduction, functionally mimicking the enzyme cytochrome c oxidase. The installation of quinols can boost electrocatalytic activity and even enable otherwise inactive ligand frameworks to support electrocatalysis. The quinols can also shift the product selectivity of O2 reduction from H2O2 to H2O without markedly increasing the effective overpotential. Distinct control of the coordination environment around the metal center allows the most successful of these catalysts to use economic and naturally abundant first-row transition metals such as iron and cobalt to selectively reduce O2 to H2O at low effective overpotentials. With iron, we have found that the electrocatalysts can enter the catalytic cycle as either an Fe(II) or Fe(III) species with no difference in turnover frequency. The entry point to the cycle, however, has a marked impact on the effective overpotential, with the Fe(III) species thus far being more efficient. 
    more » « less
  4. The iron-containing heterodimeric MbnBC enzyme complex plays a central role in the biosynthesis of methanobactins (Mbns), ribosomally synthesized, posttranslationally modified natural products that bind copper with high affinity. MbnBC catalyzes a four-electron oxidation of a cysteine residue in its precursor-peptide substrate, MbnA, to an oxazolone ring and an adjacent thioamide group. Initial studies of MbnBC indicated the presence of both diiron and triiron species, complicating identification of the catalytically active species. Here, we present evidence through activity assays combined with electron paramagnetic resonance (EPR) and Mössbauer spectroscopic analysis that the active species is a mixed-valent, antiferromagnetically coupled Fe(II)Fe(III) center. Consistent with this assignment, heterologous expression of the MbnBC complex in culture medium containing less iron yielded purified protein with less bound iron but greater activity in vitro. The maximally activated MbnBC prepared in this manner could modify both cysteine residues in MbnA, in contrast to prior findings that only the first cysteine could be processed. Site-directed mutagenesis and multiple crystal structures clearly identify the two essential Fe ions in the active cluster as well as the location of the previously detected third Fe site. Moreover, structural modeling indicates a role for MbnC in recognition of the MbnA leader peptide. These results add a biosynthetic oxidative rearrangement reaction to the repertoire of nonheme diiron enzymes and provide a foundation for elucidating the MbnBC mechanism. 
    more » « less
  5. Substituted 5-hydroxy γ-pyrones have shown promise as covalent inhibitor leads against cysteine proteases and transcription factors, but their hydrolytic instability has hindered optimization efforts. Previous mechanistic proposals have suggested that these molecules function as Michael acceptor prodrugs, releasing a leaving group to generate an ortho quinone methide–like structure. Addition to this electrophile by either water or an active site cysteine was purported to lead to inhibitor hydrolysis or enzyme inhibition, respectively. Through the use of kinetic NMR experiments, Hammett analysis, kinetic isotope effect studies, and density functional theory calculations, our findings suggest that enzyme inhibition and hydrolysis proceed by distinct pathways and are differentially influenced by substituent electronics. This mechanistic revision helps enable a more rational optimization for this class of promising compounds 
    more » « less