skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis
The iron-containing heterodimeric MbnBC enzyme complex plays a central role in the biosynthesis of methanobactins (Mbns), ribosomally synthesized, posttranslationally modified natural products that bind copper with high affinity. MbnBC catalyzes a four-electron oxidation of a cysteine residue in its precursor-peptide substrate, MbnA, to an oxazolone ring and an adjacent thioamide group. Initial studies of MbnBC indicated the presence of both diiron and triiron species, complicating identification of the catalytically active species. Here, we present evidence through activity assays combined with electron paramagnetic resonance (EPR) and Mössbauer spectroscopic analysis that the active species is a mixed-valent, antiferromagnetically coupled Fe(II)Fe(III) center. Consistent with this assignment, heterologous expression of the MbnBC complex in culture medium containing less iron yielded purified protein with less bound iron but greater activity in vitro. The maximally activated MbnBC prepared in this manner could modify both cysteine residues in MbnA, in contrast to prior findings that only the first cysteine could be processed. Site-directed mutagenesis and multiple crystal structures clearly identify the two essential Fe ions in the active cluster as well as the location of the previously detected third Fe site. Moreover, structural modeling indicates a role for MbnC in recognition of the MbnA leader peptide. These results add a biosynthetic oxidative rearrangement reaction to the repertoire of nonheme diiron enzymes and provide a foundation for elucidating the MbnBC mechanism.  more » « less
Award ID(s):
2108583 1908587
PAR ID:
10326901
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
13
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments. 
    more » « less
  2. null (Ed.)
    A series of Al2O3-supported Fe-containing catalysts were synthesized by incipient wetness impregnation. The iron surface density was varied from 1 to 13 Fe atoms/nm2 spanning sub- and above-monolayer coverage. The resulting supported Fe-catalysts were characterized with N2 physisorption, ex situ XRD, PDF, XAS, AC-STEM and chemically probed by H2-TPR. The results suggest that over this entire range of loadings, Fe was present as dispersed species, with only a very small fraction of Fe2O3 aggregates, at the highest Fe loading. The in situ sulfidation of Fe/Al2O3 resulted in the formation of a highly active and selective PDH catalyst. The highest activity with 52% propane conversion and ~99% propylene selectivity at 560 °C was obtained for the 6.4 Fe/Al2O3 catalyst suggesting that this is the highest amount of Fe that could be fully dispersed on the support in sulfided form. XRD and AC-STEM indicated the absence of any crystalline iron sulfide aggregates after sulfidation and reaction. H2-TPR results indicated that the amount of the reducible Fe sites in the sulfided catalyst remained constant above monolayer coverage, and increasing loading did not increase the number of reducible Fe sites. Consistent with these results, the reactivity per gram of catalyst showed no increase with Fe loading above monolayer coverage, suggesting that additional Fe remains conformal to the alumina surface. 
    more » « less
  3. Liposomes containing high-spin Fe(iii ) coordination complexes were prepared towards the production of T 1 MRI probes with improved relaxivity. The amphiphilic Fe( iii) complexes were anchored into the liposome with two alkyl chains to give a coordination sphere containing mixed amide and hydroxypropyl pendant groups. The encapsulated complex contains a macrocyclic ligand with three phosphonate pendants, [Fe(NOTP)] 3−, which was chosen for its good aqueous solubility. Four types of MRI probes were prepared including those with intraliposomal Fe(iii) complex (LipoA) alone, amphiphilic Fe(iii) complex (LipoB), both intraliposomal and amphiphilic complex (LipoC) or micelles formed with amphiphilic complex. Water proton relaxivities r 1 and r 2 were measured and compared to a small molecule macrocyclic Fe(iii) complex containing similar donor groups. Micelles of the amphiphilic Fe( iii) complex had proton relaxivity values ( r 1 = 2.6 mM−1 s −1 ) that were four times higher than the small hydrophilic analog. Liposomes with amphiphilic Fe(iii) complex (LipoB) have a per iron relaxivity of 2.6 mM −1 s −1 at pH 7.2, 34 °C at 1.4 T whereas liposomes containing both amphiphilic and intraliposomal Fe(iii) complexes (lipoC) have r 1 of 0.58 mM −1 s −1 on a per iron basis consistent with quenching of the interior Fe(iii) complex relaxivity. Liposomes containing only encapsulated [Fe(NOTP)]3− have a lowered r 1 of 0.65 mM−1s −1 per iron complex. Studies show that the biodistribution and clearance of the different types liposomal nanoparticles differ greatly. LipoB is a blood pool agent with a long circulation time whereas lipoC is cleared more rapidly through both renal and hepatobiliary pathways. These clearance differences are consistent with lower stability of LipoC compared to LipoB. 
    more » « less
  4. Tyrosine residues act as intermediates in proton coupled electron transfer reactions (PCET) in proteins. For example, in ribonucleotide reductase (RNR), a tyrosyl radical oxidizes an active site cysteine via a 35 Å pathway that contains multiple aromatic groups. When singlet tyrosine is oxidized, the radical becomes a strong acid, and proton transfer reactions, which are coupled with the redox reaction, may be used to control reaction rate. Here, we characterize a tyrosine-containing beta hairpin, Peptide O, which has a cross-strand, noncovalent interaction between its single tyrosine, Y5, and a cysteine (C14). Circular dichroism provides evidence for a thermostable beta-turn. EPR spectroscopy shows that Peptide O forms a neutral tyrosyl radical after UV photolysis at 160 K. Molecular dynamics simulations support a phenolic/SH interaction in the tyrosine singlet and radical states. Differential pulse voltammetry exhibits pH dependence consistent with the formation of a neutral tyrosyl radical and a p K a change in two other residues. A redox-coupled decrease in cysteine p K a from 9 (singlet) to 6.9 (radical) is assigned. At pD 11, picosecond transient absorption spectroscopy after UV photolysis monitors tyrosyl radical recombination via electron transfer (ET). The ET rate in Peptide O is indistinguishable from the ET rates observed in peptides containing a histidine and a cyclohexylalanine (Cha) at position 14. However, at pD 9, the tyrosyl radical decays via PCET, and the decay rate is slowed, when compared to the histidine 14 variant. Notably, the decay rate is accelerated, when compared to the Cha 14 variant. We conclude that redox coupling between tyrosine and cysteine can act as a PCET control mechanism in proteins. 
    more » « less
  5. Dos Santos, P.C. (Ed.)
    Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid l-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform. 
    more » « less