One major challenge in the development of nanoparticle-based therapeutics, including viral vectors for the delivery of gene therapies, is the development of cost-effective purification technologies. The objective of this study was to examine fouling and retention behaviors during the filtration of model nanoparticles through membranes of different pore sizes and the effect of solution conditions. Data were obtained with 30 nm fluorescently labeled polystyrene latex nanoparticles using both cellulosic and polyethersulfone membranes at a constant filtrate flux, and both pressure and nanoparticle transmission were evaluated as a function of cumulative filtrate volume. The addition of NaCl caused a delay in nanoparticle transmission and an increase in fouling. Nanoparticle transmission was also a function of particle hydrophobicity. These results provide important insights into the factors controlling transmission and fouling during nanoparticle filtration as well as a framework for the development of membrane processes for the purification of nanoparticle-based therapeutics.
more »
« less
This content will become publicly available on January 1, 2026
Development of a local wall concentration model for the design of single pass tangential flow filtration (SPTFF) systems with viral vector surrogates
Recent advances in the use of viral vectors for gene therapy has created a need for efficient downstream processing of these novel therapeutics. Single-pass tangential flow filtration (SPTFF) can potentially improve final product quality via reductions in shear, and it can increase manufacturing productivity via simple implementation into continuous/intensified processes. This study investigated the impact of variations in pressure and flow rate along the length of the membrane on overall SPTFF performance. Constant-flux filtration experiments at feed fluxes from 14 to 420 L/m2/h (Reynolds numbers <20) were performed using Pellicon® 3 TFF cassettes with fluorescent nanoparticles as model viral vectors. The location of nanoparticle accumulation shifted towards the filter outlet at high conversion and was also a function of the permeate flow configuration. These phenomena were explained using a newly developed concentration polarization model that predicts the distribution in local wall concentration over the length of the membrane. The model accurately captured the observed nanoparticle accumulation trends, including the effects of the permeate flow profile (co-current, divergent, or convergent flow) on nanoparticle accumulation within the SPTFF module. Nanoparticle accumulation at moderate conversion was more uniform using convergent flow, but nanoparticle accumulation at 80 % conversion (5x concentration factor) can be minimized using a divergent flow configuration. The local wall concentration model was also used to evaluate the critical flux by assuming that fouling occurs when the nanoparticle concentration at any point along the membrane surface exceeds 15 % by volume. These results provide important insights for the design and operation of SPTFF technology for inline concentration of viral vectors.
more »
« less
- PAR ID:
- 10558208
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Membrane Science
- Volume:
- 713
- Issue:
- C
- ISSN:
- 0376-7388
- Page Range / eLocation ID:
- 123276
- Subject(s) / Keyword(s):
- Ultrafiltration SPTFF Critical flux Viral vectors AAV Lentivirus
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Organic solvent filtration is an important industrial process. It is widely used in pharmaceutical manufacturing, chemical processing industry, semiconductor industry, auto assembly etc. Most of the particle filtration studies reported in open literature dealt with aqueous suspension medium. The current work has initiated a study of cross-flow solvent filtration behavior of microporous ethylene chlorotrifluoroethylene (ECTFE) membranes using 12 nm silica nanoparticles suspended in an aqueous solution containing 25% ethanol. In the constant pressure mode of operation of cross-flow microfiltration (MF), permeate samples were collected at different time intervals. The permeate particle size distribution (PSD) results for different experiments were identical. Particle agglomerates having less than 100 nm size can pass through the membrane; some fouling was observed. The governing fouling mechanisms for tests operated using 3.8×10−3 kg/m3 (3.8 ppm) at 6.9×103 Pag and 1.4×104 Pag were pore blocking. For tests conducted using 3.8×10−3 kg/m3 (3.8 ppm) at 27.6×103 Pag (4 psig) and 1.9×10−3 kg/m3 (1.9 ppm) at 6.9×103, 13.8×103 and 27.6×103 Pag (1, 2 and 4 psig), the mechanism was membrane resistance control. Less particles got embedded in membrane pores in experiments operated using suspensions with lower or higher particle concentrations with a higher transmembrane pressure. This is in good agreement with the values of the shear rate in the pore flow and scanning electron microscope images of the membrane after MF. In the dead-end mode of operation of solvent filtration using methanol, ethanol and 2-propanol, the permeate flux behavior follows Jmethanol > Jethanol > J2-propanol at all testing pressures. The values of permeance (kg/m2-s-Pa) determined from the slope of the linear plot of filtration flux vs. the applied pressure difference across the membrane, were 3.9×10−4, 2.3×10−4 and 3.0×10−5 for methanol, ethanol and 2-propanol, respectively. Further exploration was made on solvent sorption results reported earlier. The critical temperature of selected solvents shows a better correlation with solvent sorption rather than the solubility parameter.more » « less
-
Abstract Tangential flow filtration (TFF) has many advantages for bioreactor harvesting, as the permeate could be introduced directly to the subsequent capture step. However, membrane fouling has limited its widespread use. This is particularly problematic given the high cell densities encountered today. Here, a reverse asymmetric membrane, where the more open surface faces the feed stream and the tighter barrier layer faces the permeate stream, has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of yeast suspensions has been conducted under a range of conditions. The yeast cells are trapped in the open pore structure. The membrane stabilizes an internal porous cake that acts like a depth filter. This stabilized cake layer can remove particulate matter that would foul the barrier layer if it faced the feed stream. As filtration continues, a surface cake layer forms on the membrane surface. A resistance in series model has been developed to describe the permeate flux during TFF. The model contains three fitted parameters which can easily be determined from constant pressure normal flow filtration experiments and total recycle constant flux TFF experiments. The model can be used to estimate the capacity of the filter for a given feed stream. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor harvesting.more » « less
-
NA (Ed.)Membrane distillation (MD) is a thermally-driven desalination process that can treat hypersaline brines. Considerable MD literature has focused on mitigating temperature and concentration polarization. This literature largely neglects that temperature and concentration polarization increase the feed density near the membrane. With gravity properly oriented, this increase in density could trigger buoyancy-driven convection and increase permeate production. Convection could also be strengthened by heating the feed channel wall opposite the membrane. To investigate that possibility, we perform a series of experiments using a plate-and-frame direct contact MD system with an active membrane area of 300 cm2 and a feed channel wall heated using a resistive heater. The experiments measure the average transmembrane permeate flux for two gravitational orientations, feed Reynolds numbers between 128 and 1128, and wall heat fluxes up to 12 kW/m2. The results confirm that with gravity properly oriented, wall-heating can trigger buoyancy-driven convection for a wide range of feed Reynolds numbers, and increase permeate production between roughly 20 and 130 %. We estimate, however, that at high Reynolds numbers (𝑅𝑒 > 800), more than 70 % of the wall heat is carried out of the MD system by the feed flow, without contributing to permeate production. This suggests the need for longer membranes and heat recovery steps in any future practical implementation.more » « less
-
null (Ed.)Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed-and-bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start-up and steady-state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed-and-bleed configuration for the initial capture / purification of a mAb product.more » « less