An abundance of literature demonstrates that women’s and minorities’ sense of belonging, or lack thereof, influences their academic performance and persistence in STEM education and careers. To address this problem, we developed a holistic, socio-culturally responsive peer-mentoring program that provided an academic, institutional, and social support system for first-year engineering students. The purpose of this program, Promoviendo el Éxito Estudiantil a través de un Sistema de Apollo (PromESA), is to increase students’ sense of belonging and, by extension, their persistence and graduation rates in engineering, particularly for Latinx students and their intersectionalities. The pilot mentoring program was integrated into a first-year sequence of courses where students would meet with their peer-mentors (i.e., Compañeros/as) during class time. Compañeros/as (Compas for short) provided their mentees with assistance such as tutoring, advising, directing them to available university services and, equally important, emotional support through building friendship, confirmation, and affirmation to improve the students’ sense of belonging. The research seeks to identify academic, institutional, and social support elements that positively influence students’ sense of belonging and explore how integrating Latinx cultural assets and values influence Latinx students’ perceptions of engineering. Findings from the first year of implementation reveal that participants with peer-mentors from their academic major reported a higher sense of belonging than participants with peer-mentors from other academic majors. Also, participants reported receiving social support (i.e., peer and classroom), regardless of academic major. Participant feedback was mixed, with some reporting that peer-mentoring was a key contributor to their sense of belonging while others reported that it contributed somewhat to their sense of belonging and a few reported that it did not contribute to their sense of belonging at all.
more »
« less
This content will become publicly available on June 1, 2025
Making Space in a Makerspace: Increasing Belonging through Social Engagement
In recent years, there have been many efforts to increase student sense of belonging in engineering as it has been shown to positively impacting student retention, persistence, and success. One promising venue for building belonging is the academic makerspace. Makerspaces provide a setting for informal learning and student connection inspired by creativity, discovery, and collaboration. Due to the flexible and informal nature of the makerspace environment, it is an ideal place to create social connections between students. Supporting students’ social and emotional development is an essential component to creating culturally competent, well-rounded engineers who exhibit a strong sense of belonging in engineering. Funded through the NSF Research Initiation in Engineering Formation (RIEF) program, this project researched the impact of integrating social engagement activities into an academic makerspace on the development of student sense of belonging. The primary research question explored the extent to which participation in the engagement activities leads to an increased sense of belonging for engineering students. Spanning a two-year period, a series 32 of social engagement events were hosted in the engineering department makerspace. The authors collected data about students perceived social belonging in both the makerspace and the department. Students completed two surveys: a pre-survey administered at the beginning of the social engagement activity and a post-survey administered at the end of each academic year. Findings indicate the social engagement events had a positive impact on the development of student sense of belonging to both the makerspace and the engineering department. These results are encouraging as they suggest that events designed to support the social and emotional development of students can positively impact student sense of belonging to a makerspace environment and, more broadly, to engineering. By creating supportive communities of students built on shared experience and trust, we begin to develop the inclusive communities of learners that is a key component to diversifying pathways to engineering.
more »
« less
- Award ID(s):
- 2106017
- PAR ID:
- 10558242
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 outbreak spurred unplanned closures and transitions to online classes. Physical environments that once fostered social interaction and community were rendered inactive. We conducted interviews and administered surveys to examine undergraduate STEM students’ feelings of belonging and engagement while in physical isolation, and identified online teaching modes associated with these feelings. Surveys from a racially diverse group of 43 undergraduate students at a Hispanic Serving Institution (HSI) revealed that interactive synchronous instruction was positively associated with feelings of interest and belonging, particularly for students of color, while noninteractive instruction reduced social belonging, but was related to more cognitive engagement. Small group and one-on-one interviews with 23 of these students suggest that students derived feelings of connectedness from their instructors, peers, and prior experiences and relied on their sense of competency to motivate themselves in the course and feel a sense of belonging. Two embedded cases of students in physics classrooms are compared to highlight the range of student feelings of connectedness and competency during the lockdown. Findings reaffirm that social interaction tends to support belonging and engagement, particularly for under-represented (Black or African American and Hispanic) racial groups in STEM. STEM instructors who aim to support feelings of belonging and engagement in virtual learning environments should consider increasing opportunities for student–student and student–teacher interactions, as well as taking a flexible approach that validates and integrates student voice into instruction. Future research is needed to further explore the themes of relatedness and competency that emerged as aspects of course belonging.more » « less
-
The observations to date for an NSF S-STEM Research project will be shared as a work in progress. The NSF S-STEM program has enabled academically talented lower income scholars at a community college to receive scholarships and intentional advising since 2006. This support resulted in higher success rates based on GPA as well as higher graduation and transfer rates. In addition, the percentage of students who are historically underrepresented in the engineering and computer science fields was greater among these NSF scholars in comparison to the overall program comparison group. Starting in 2020, a research component was added to the scholarship program with a desire to better understand the development of student self-efficacy and sense of belonging. In particular, the impact of enhanced community building activities at the college using the Fablab as a central hub was of interest. The lab was developed in part to encourage commuter students to engage in more experiential learning and social collaboration between classes. While considerable research has been conducted on self-efficacy, sense of belonging and student success, there is limited data available on connections to a Fablab / makerspace environment and even less in a community college context. For the last four semesters, the NSF engineering and computer science scholars and a comparison student population have completed a survey to provide a measure of their self-efficacy relative to engineering, tinkering and design, sense of belonging, and inclusion. Observations and survey results to date will be shared. Since the timing of these surveys is such that only one occurred prior to the pandemic, there will be an attempt to disentangle the effects of the remote learning experience and discussion of the virtual approach to support services. In addition, the self-efficacy and sense of belonging measures will be analyzed for different student populations including the NSF scholars and overall comparison group as well as exploring underrepresented status in terms of gender and ethnicity. Next steps will be discussed for the following three years of the research program.more » « less
-
The purpose of this complete research paper is to analyze the impacts of an open makerspace on the development of students’ engineering identities. This paper seeks to build upon current belonging analyses about makerspaces and shift the focus towards students’ engineering identities. Our team interviewed 17 first-year engineering students attending a small, private university located in the American southwest. During the interviews, they were asked to reflect on their experiences in classes and involvement in engineering related activities. Some of the interview questions are influenced by previous models of engineering identity. Our research team noticed a pattern of students spending personal time using the Makerspace in their engineering department. This is an open workshop where students have access to free supplies to do what we’ve called “make” which is the act of problem solving, designing, and building using the tools provided. The high rate at which this space is mentioned in tandem with the students’ successes during the two semesters exemplifies the impact it has on student retention rates. We noticed a trend that students who have strong engineering identities tend to spend time making in the Makerspace. Any mention of the Makerspace itself or any connective context pieces relating to activities of the Makerspace spoken by the group of students were collected by our research team. This paper will examine how heavy of an impact, if at all, the Makerspace has on the further development of a student's ability to recognize themselves as an engineer if they came into college with an initial interest in making. Our analysis suggests the Makerspace provides an opportunity for students to display performance when making. This in turn causes students to see themselves as engineers when they experience internal and external recognition from being in the Makerspace. The results of this analysis will aid in the creation of effective intervention methods universities can implement during the first year engineering curriculum to increase retention rates.more » « less
-
This research paper describes the experiences of freshman STEM students arriving on a college campus for the first time after nearly a year and a half of online learning in high school. Fall 2021 marked the return of in-person learning in higher education, grown from a belief in and commitment to the value of interactions only achieved in such context (Sabella, 2021). First-year programs across the country welcomed first-time-in-college (FTIC) freshmen, many of whom experienced lower levels of social, emotional, and academic well-being due to extended periods of online learning in their final years of high school (Duckworth, et al., 2021). This reality, for some students, represented an unfamiliar learning environment to be negotiated in understanding their multiplying and evolving spaces as learners (e.g., Sequeira & Dacey, 2020). This qualitative study sought to understand the aspects and ways in which FTIC freshmen in a STEM student success program experienced a face-to-face first semester of college following an extended period of online learning, and how these experiences shaped a sense of belonging toward identity development, both as a college student in general and as a STEM major in particular. To explore these ideas, longitudinal qualitative data were collected through a series of focus groups in the fall of 2021. Participating students had substantial identified financial need and received scholarship support as part of the program. They also had the opportunity to participate as a cohort in intentionally designed curricular and co-curricular activities aimed at supporting their academic journey toward successful completion of a STEM degree. Findings suggest that physical space (e.g., the library and other specific locations on campus) played a disproportionate role in creating a sense of belonging for students. The results of this project add important nuance to the sense of belonging and identity development literature by expanding our understanding of the ways place, context, and prior experiences may uniquely intersect to ultimately influence belonging and identity in college. Keywords: STEM Identity, COVID, First-Year Experience, Sense of Belongingmore » « less