skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 19, 2025

Title: Paleo aridity in the Levant driven by a strong North Atlantic latitudinal surface temperature gradient and present-day relevance
The mechanisms underlying the current greenhouse gas (GHG) forced decline in Mediterranean rainfall remain a matter of debate. To inform our understanding of the current and projected drying, we examined extended arid intervals in the late Quaternary, Eastern Mediterranean (EM) Levant indicated by substantial salt deposits in a Dead Sea sediment core covering the past 220 kyr. These arid events occurred during interglacials, when the Earth was at perihelion to the sun in boreal fall and during glacial–interglacial transitions, associated with icesheet melting. Climate models forced with realistic late Quaternary insolation variations show that when the Earth is closest to the Sun in boreal fall, the North Atlantic latitudinal surface temperature gradient in the winter intensifies. In response, the overlying midlatitude North Atlantic jet stream and the extratropical storm track move poleward while sea-level pressure rises in the subtropics. These changes bring about a weakening of the Mediterranean storm track and a decline in rainfall over the entire basin. During glacial–interglacial transitions, meltwater from continental icesheets forced abrupt subpolar North Atlantic cooling. This also strengthened the latitudinal surface temperature gradient, likely causing similar atmospheric response and aridity in the Mediterranean. There is a strong resemblance between this paleoclimate scenario and the climatic changes corresponding to the present and projected GHG drying of the EM. Hence, the late Quaternary palaeohydrology of the Dead Sea indicates an important North Atlantic centered response to external forcing, which leads to Mediterranean drying and is relevant in the present.  more » « less
Award ID(s):
2127684 2317159
PAR ID:
10558267
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
47
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An intermediate-complexity general circulation model is used to disentangle changes in the large-scale zonally asymmetric circulation in response to rising greenhouse gases. Particular focus is on the anomalous ridge that develops over the Mediterranean in future climate projections, directly associated with reduced winter precipitation over the region. Specifically, we examine changes in stationary waves forced by land–sea contrast, horizontal oceanic heat fluxes, and orography, following a quadrupling of CO2. The stationary waves associated with these three drivers depend strongly on the climatological state, precluding a linear decomposition of their responses to warming. However, our modeling framework still allows a process-oriented approach to quantify the key drivers and mechanisms of the response. A combination of three similarly important mechanisms is found responsible for the rain-suppressing ridge. The first is part of a global response to warming: elongation of intermediate-scale stationary waves in response to strengthened subtropical winds aloft, previously found to account for hydroclimatic changes in southwestern North America. The second is regional: a downstream response to the North Atlantic warming hole and enhanced warming of the Eurasian landmass relative to the Atlantic Ocean. A third contribution to the Mediterranean Ridge is a phase shift of planetary wave 3, primarily associated with an altered circulation response to orographic forcing. Reduced land–sea contrast in the Mediterranean basin, previously thought to contribute substantially to Mediterranean drying, has a negligible effect in our integrations. This work offers a mechanistic analysis of the large-scale processes governing projected Mediterranean drying, lending increased understanding and credibility to climate model projections. 
    more » « less
  2. Abstract Change over recent decades in the world's five Mediterranean Climate Regions (MCRs) of quantities of relevance to water resources, ecosystems and fire are examined for all seasons and placed in the context of changes in large‐scale circulation. Near‐term future projections are also presented. It is concluded that, based upon agreement between observational data sets and modelling frameworks, there is strong evidence of radiatively‐driven drying of the Chilean MCR in all seasons and southwest Australia in winter. Observed drying trends in California in fall, southwest southern Africa in fall, the Pacific Northwest in summer and the Mediterranean in summer agree with radiatively‐forced models but are not reproduced in a model that also includes historical sea surface temperature (SST) forcing, raising doubt about the human‐origin of these trends. Observed drying in the Mediterranean in winter is stronger than can be accounted for by radiative forcing alone and is also outside the range of the SST‐forced ensemble. It is shown that near surface vapour pressure deficit (VPD) is increasing almost everywhere but that, surprisingly, this is contributed to in the Southern Hemisphere subtropics to mid‐latitudes by a decline in low‐level specific humidity. The Southern Hemisphere drying, in terms of precipitation and specific humidity, is related to a poleward shift and strengthening of the westerlies with eddy‐driven subsidence on the equatorward side. Model projections indicate continued drying of Southern Hemisphere MCRs in winter and spring, despite ozone recovery and year‐round drying in the Mediterranean. Projections for the North American MCR are uncertain, with a large contribution from internal variability, with the exception of drying in the Pacific Northwest in summer. Overall the results indicate continued aridification of MCRs other than in North America with important implications for water resources, agriculture and ecosystems. 
    more » « less
  3. Abstract The western Pacific warm pool (WPWP) is the heat engine of the global climate system delivering vast amounts of heat and moisture to the atmosphere. Controls on regional convection, however, are numerous, making it difficult to simulate past and future changes in WPWP hydroclimate with confidence. Here, we synthesize new and previously available precipitation sensitive records from the WPWP spanning the last and present interglacial periods. We find two primary modes of rainfall variability, both driven by precession forcing, that are common to both interglacial periods: (a) a contraction of the tropical rain band across the interglacial and (b) a mid‐interglacial strengthening of the Pacific Walker Circulation (PWC). We further demonstrate that while the amplitude of the change in seasonal insolation across the Holocene is far lower than during the LIG due to the low eccentricity state of Earth's orbit, the response of regional rainfall is comparable during both interglacials, indicating a nonlinear response to the insolation forcing. Finally, we suggest an enhanced sensitivity of the PWC to non‐insolation climate forcing, including greenhouse gases and sea level change, under strongly reduced boreal fall insolation as observed during the late Holocene and late LIG. 
    more » « less
  4. Abstract The physical mechanisms whereby the mean and transient circulation anomalies associated with the North Atlantic Oscillation (NAO) drive winter mean precipitation anomalies across the North Atlantic Ocean, Europe, and the Mediterranean Sea region are investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis. A moisture budget decomposition is used to identify the contribution of the anomalies in evaporation, the mean flow, storm tracks and the role of moisture convergence and advection. Over the eastern North Atlantic, Europe, and the Mediterranean, precipitation anomalies are primarily driven by the mean flow anomalies with, for a positive NAO, anomalous moist advection causing enhanced precipitation in the northern British Isles and Scandinavia and anomalous mean flow moisture divergence causing drying over continental Europe and the Mediterranean region. Transient eddy moisture fluxes work primarily to oppose the anomalies in precipitation minus evaporation generated by the mean flow, but shifts in storm-track location and intensity help to explain regional details of the precipitation anomaly pattern. The extreme seasonal precipitation anomalies that occurred during the two winters with the most positive (1988/89) and negative (2009/10) NAO indices are also explained by NAO-associated mean flow moisture convergence anomalies. 
    more » « less
  5. This paper examines the hydroclimate history of the Eastern Mediterranean (EM) region during the 10th to 14th centuries C.E., a period known as the Medieval Climate Anomaly (MCA), a time of significant historical turmoil and change in the region. The study assembles several regional hydroclimatic archives, primarily the Dead Sea reconstructed lake level curve together with the recently extracted deep-lake sediment record, the Soreq Cave speleothem record and its counterpart, the EM marine sediment record and the Cairo Nilometer record of annual maximum summer flood levels in lower Egypt. The Dead Sea record is a primary indicator of the intensity of the EM cold-season storm activity while the Nilometer reflects the intensity of the late summer monsoon rains over Ethiopia. These two climate systems control the annual rainfall amounts and water availability in the two regional breadbaskets of old, in Mesopotamia and Egypt. The paleoclimate archives portray a variable MCA in both the Levant and the Ethiopian Highlands with an overall dry, early-medieval climate that turned wetter in the 12th century C.E. However, the paleoclimatic records are markedly punctuated by episodes of extreme aridity. In particular, the Dead Sea displays extreme low lake levels and significant salt deposits starting as early as the 9th century C.E. and ending in the late 11th century. The Nile summer flood levels were particularly low during the 10th and 11th centuries, as is also recorded in a large number of historical chronicles that described a large cluster of droughts that led to dire human strife associated with famine, pestilence and conflict. During that time droughts and cold spells also affected the northeastern Middle East, in Persia and Mesopotamia. Seeking an explanation for the pronounced aridity and human consequences across the entire EM, we note that the 10th–11th century events coincide with the medieval Oort Grand Solar Minimum, which came at the height of an interval of relatively high solar irradiance. Bringing together other tropical and Northern Hemisphere paleoclimatic evidence, we argue for the role of long-term variations in solar irradiance in shaping the early MCA in the EM and highlight their relevance to the present and near-term future. 
    more » « less