Post-fire flooding and debris flows are often triggered by increased overland flow resulting from wildfire impacts on soil infiltration capacity and surface roughness. Increasing wildfire activity and intensification of precipitation with climate change make improving understanding of post-fire overland flow a particularly pertinent task. Hydrologic signatures, which are metrics that summarize the hydrologic regime of watersheds using rainfall and runoff time series, can be calculated for large samples of watersheds relatively easily to understand post-fire hydrologic processes. We demonstrate that signatures designed specifically for overland flow reflect changes to overland flow processes with wildfire that align with previous case studies on burned watersheds. For example, signatures suggest increases in infiltration-excess overland flow and decrease in saturation-excess overland flow in the first and second years after wildfire in the majority of watersheds examined. We show that climate, watershed and wildfire attributes can predict either post-fire signatures of overland flow or changes in signature values with wildfire using machine learning. Normalized difference vegetation index (NDVI), air temperature, amount of developed/undeveloped land, soil thickness and clay content were the most used predictors by well-performing machine learning models. Signatures of overland flow provide a streamlined approach for characterizing and understanding post-fire overland flow, which is beneficial for watershed managers who must rapidly assess and mitigate the risk of post-fire hydrologic hazards after wildfire occurs.
more »
« less
This content will become publicly available on March 1, 2026
New watershed methods for isolating and characterizing discrete objects in 3D data sets
This paper introduces new algorithms for conducting and improving watershed analysis, implemented with the particular goal of improving the ability to measure the shapes of mineral grains to be subsequently be analyzed by mass spectrometry. This application requires a high degree of accuracy and fidelity in terms of both separating all touching grains and preserving their shapes. The algorithms are designed to take advantage of a vector-based programming environment. A new implementation of the Euclidean distance transform utilizes the fact that the distance from any adjacent pair of voxels to the nearest boundary must be within one voxel of each other. In practice, however, this algorithm is outperformed by a smoothed approximate distance transform that is faster to compute and results in less irregular watershed boundaries. A one-pass rainfall-based watershed algorithm is introduced that runs in linear time with the number of segmented voxels, and requires no priority queue. Unlike marker-based watershed algorithms based on the basin-filling approach, the rainfall approach finds watersheds associated with all local maxima in the distance map, even if a marking algorithm is used. A post-watershed smoothing algorithm improves watershed boundaries and eliminates small spurious watersheds. The one-pass watershed and post-watershed smoothing algorithms run in times superior or comparable to basin-fill watershed algorithms implemented in other environments, and offers excellent ability to separate touching objects efficiently while placing watershed boundaries that maximize the preservation of details of particle shape. Further time improvement could come from implementing them in a vector-based environment that allows explicit multi-threading.
more »
« less
- Award ID(s):
- 1946639
- PAR ID:
- 10558328
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Tomography of Materials and Structures
- Volume:
- 7
- Issue:
- C
- ISSN:
- 2949-673X
- Page Range / eLocation ID:
- 100043
- Subject(s) / Keyword(s):
- Watershed algorithm Distance transform 3D analysis Computed tomography Zircon Geochronology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Shell Creek Watershed (SCW) is a rural watershed in Nebraska with a history of chronic flooding. Beginning in 2005, a variety of conservation practices have been employed in the watershed. Those practices have since been credited with attenuating flood severity and improving water quality in SCW. This study investigated the impacts of 13 different controlling factors on flooding at SCW by using an artificial neural network (ANN)-based rainfall-runoff model. Additionally, flood frequency analysis and drought severity analysis were conducted. Special emphasis was placed on understanding how flood trends change in light of conservation practices to determine whether any relation exists between the conservation practices and flood peak attenuation, as the strategic conservation plan implemented in the watershed provides a unique opportunity to examine the potential impacts of conservation practices on the watershed. The ANN model developed in this study showed satisfactory discharge–prediction performance, with a Kling–Gupta Efficiency (KGE) value of 0.57. It was found that no individual controlling variable used in this study was a significantly better predictor of flooding in SCW, and therefore all 13 variables were used as inputs, which resulted in the satisfactory ANN model discharge–prediction performance. Furthermore, it was observed that after conservation planning was implemented in SCW, the magnitude of anomalous peak flows increased, while the magnitude of annual peak flows decreased. However, more comprehensive assessment is necessary to identify the relative impacts of conservation practices on flooding in the basin.more » « less
-
null (Ed.)Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is also evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate.more » « less
-
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming algorithms that use $$\tilde{O}(k)\cdot\mathrm{poly}(1/\varepsilon)$$ memory, where $$k$$ is the size constraint. At the end of the stream, both our algorithms post-process their data structures using any offline algorithm for submodular maximization, and obtain a solution whose approximation guarantee is $$\frac{\alpha}{1+\alpha}-\varepsilon$$, where $$\alpha$$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $$\frac{1}{2}-\varepsilon$$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder-Feldman '19, that achieves the state-of-the-art offline approximation guarantee of $$\alpha=0.385$$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman'18. One of our algorithms is combinatorial and enjoys fast update and overall running times. Our other algorithm is based on the multilinear extension, enjoys an improved space complexity, and can be made deterministic in some settings of interest.more » « less
-
This work discusses new methodologies for identifying the grain boundaries in color images of metallic microstructures and the quantification of their grain topology. Grain boundaries have a large impact on the macro-scale material properties. Particularly, this work employs the experimental microstructure data of Titanium-Aluminum alloys, which can be used for various aerospace components owing to their outstanding mechanical performance in elevated temperatures. The grain topology of these metallic microstructures is quantified using the concept of shape moment invariants. In order to capture the grains using the shape moment invariants, it is necessary to identify the grain boundaries and separate them from their respective grains. We present two methodologies to detect the grain boundaries. The first method is the tolerance-based neighbor analysis. The second method focuses on creating three-dimensional space of pixel intensity values based on the three color channels and measuring the Euclidean distance to separate different grains. Additionally, since the grain boundaries may not possess the same material properties as the grain itself, this work investigates the effect of including the grain boundaries when determining the homogenized material properties of the given microstructure. To generate adequate statistical information, microstructures are reconstructed from the experimental data using the Markov Random Field (MRF) method. Upon separating the grains, we use the shape moment invariants to quantify the shapes of different grains. Using the shape moment invariants and the experimental material property values, three neural network functions are developed to investigate the effects of grain boundaries on material property predictions.more » « less
An official website of the United States government
