skip to main content


Title: Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming algorithms that use $\tilde{O}(k)\cdot\mathrm{poly}(1/\varepsilon)$ memory, where $k$ is the size constraint. At the end of the stream, both our algorithms post-process their data structures using any offline algorithm for submodular maximization, and obtain a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder-Feldman '19, that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman'18. One of our algorithms is combinatorial and enjoys fast update and overall running times. Our other algorithm is based on the multilinear extension, enjoys an improved space complexity, and can be made deterministic in some settings of interest.  more » « less
Award ID(s):
1909314 1750333
PAR ID:
10188684
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
47th International Colloquium on Automata, Languages, and Programming
Volume:
168
Page Range / eLocation ID:
6:1--6:19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / \varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of \cite{buchbinder2019constrained}, that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to \cite{feldman2018less}. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(\frac{\log k + \log (1/\alpha {\varepsilon^2})$ per element. 
    more » « less
  2. Maximizing a monotone k-submodular function subject to cardinality constraints is a general model for several applications ranging from influence maximization with multiple products to sensor placement with multiple sensor types and online ad allocation. Due to the large problem scale in many applications and the online nature of ad allocation, a need arises for algorithms that process elements in a streaming fashion and possibly make online decisions. In this work, we develop a new streaming algorithm for maximizing a monotone k-submodular function subject to a per-coordinate cardinality constraint attaining an approximation guarantee close to the state of the art guarantee in the offline setting. Though not typical for streaming algorithms, our streaming algorithm also readily applies to the online setting with free disposal. Our algorithm is combinatorial and enjoys fast running time and small number of function evaluations. Furthermore, its guarantee improves as the cardinality constraints get larger, which is especially suited for the large scale applications. For the special case of maximizing a submodular function with large budgets, our combinatorial algorithm matches the guarantee of the state-of-the-art continuous algorithm, which requires significantly more time and function evaluations. 
    more » « less
  3. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $\alpha$ of the graph, in, either, an amortised update time of $O(\log^2 n \log \alpha)$, or a worst-case update time of $O(\log^3 n \log \alpha)$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $O(\log n \log \alpha)$, amortised, or $O(\log ^2 n \log \alpha)$, worst-case, for the problem of maintaining an edge-orientation with at most $O(\alpha + \log n)$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $n$ and $\alpha$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $(1+\varepsilon)$ approximation of the maximum subgraph density, $\rho$, of the dynamic graph. Our algorithms have update times of $O(\varepsilon^{-6}\log^3 n \log \rho)$ worst-case, and $O(\varepsilon^{-4}\log^2 n \log \rho)$ amortised, respectively. We may output a subgraph $H$ of the input graph where its density is a $(1+\varepsilon)$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $O(\varepsilon^{-6}\log ^4 n)$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $O(\varepsilon^{-6}\log^3 n \log \alpha)$ worst-case update time algorithm for maintaining a $(1~+~\varepsilon)\textnormal{OPT} + 2$ approximation of the optimal out-orientation of a graph with adaptive arboricity $\alpha$, improving the $O(\varepsilon^{-6}\alpha^2 \log^3 n)$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $O(\alpha)$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $\Delta+1$ colouring, and matrix vector multiplication. All update times are worst-case $O(\alpha+\log^2n \log \alpha)$, where $\alpha$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $O(\alpha^2 + \log^2 n)$, and by Neiman and Solomon from STOC 2013 runs in time $O(\sqrt{m})$. We give improved running times whenever the arboricity $\alpha \in \omega( \log n\sqrt{\log\log n})$. 
    more » « less
  4. We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function. 
    more » « less
  5. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    Numerous tasks in machine learning and artificial intelligence have been modeled as submodular maximization problems. These problems usually involve sensitive data about individuals, and in addition to maximizing the utility, privacy concerns should be considered. In this paper, we study the general framework of non-negative monotone submodular maximization subject to matroid or knapsack constraints in both offline and online settings. For the offline setting, we propose a differentially private $(1-\frac{\kappa}{e})$-approximation algorithm, where $\kappa\in[0,1]$ is the total curvature of the submodular set function, which improves upon prior works in terms of approximation guarantee and query complexity under the same privacy budget. In the online setting, we propose the first differentially private algorithm, and we specify the conditions under which the regret bound scales as $Ø(\sqrt{T})$, i.e., privacy could be ensured while maintaining the same regret bound as the optimal regret guarantee in the non-private setting. 
    more » « less