skip to main content


This content will become publicly available on August 12, 2025

Title: Laser-aided processing and functionalization of 2D materials

Atomically thin two-dimensional (2D) materials exhibit extraordinary optical, electrical, and mechanical properties. Many functional nanostructures and devices of exceptional performance based on 2D materials have been demonstrated. However, the processing of 2D materials remains challenging due to inadequacies that are mainly driven by high fabrication cost, complex steps, and inefficient impurity control. On the other hand, laser-aided processing techniques offer versatility, nanoscale precision, and high throughput. Numerous efforts have showcased the implementation of laser processing and functionalization of 2D materials to control their physical properties and optimize device functionality. In this Perspective, we summarize research progress on laser-enabled thinning, patterning, doping, and functionalization of 2D materials. Continuing advances in optical processing techniques are anticipated to further accelerate the deployment of 2D materials and devices in many fields, including photonics, optoelectronics, and sensor applications.

 
more » « less
Award ID(s):
2024391
PAR ID:
10558333
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
7
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in the field of two-dimensional (2D) materials have led to new electronic and photonic devices enabled by their unique properties at atomic thickness. Structuring 2D materials into desired patterns on substrates is often an essential and foremost step for the optimum performance of the functional devices. In this regard, optical patterning of 2D materials has received enormous interest due to its advantages of high-throughput, site-specific, and on-demand fabrication. Recent years have witnessed scientific reports of a variety of optical techniques applicable to patterning 2D materials. In this minireview, we present the state-of-the-art optical patterning of 2D materials, including laser thinning, doping, phase transition, oxidation, and ablation. Several applications based on optically patterned 2D materials will be discussed as well. With further developments, optical patterning is expected to hold the key in pushing the frontiers of manufacturing and applications of 2D materials. 
    more » « less
  2. Abstract

    Intercalation in few‐layer (2D) materials is a rapidly growing area of research to develop next‐generation energy‐storage and optoelectronic devices, including batteries, sensors, transistors, and electrically tunable displays. Identifying fundamental differences between intercalation in bulk and 2D materials will play a key role in developing functional devices. Herein, advances in few‐layer intercalation are addressed in the historical context of bulk intercalation. First, synthesis methods and structural properties are discussed, emphasizing electrochemical techniques, the mechanism of intercalation, and the formation of a solid‐electrolyte interphase. To address fundamental differences between bulk and 2D materials, scaling relationships describe how intercalation kinetics, structure, and electronic and optical properties depend on material thickness and lateral dimension. Here, diffusion rates, pseudocapacity, limits of staging, and electronic structure are compared for bulk and 2D materials. Next, the optoelectronic properties are summarized, focusing on charge transfer, conductivity, and electronic structure. For energy devices, opportunities also emerge to design van der Waals heterostructures with high capacities and excellent cycling performance. Initial studies of heterostructured electrodes are compared to state‐of‐the‐art battery materials. Finally, challenges and opportunities are presented for 2D materials in energy and optoelectronic applications, along with promising research directions in synthesis and characterization to engineer 2D materials for superior devices.

     
    more » « less
  3. Abstract

    Strain engineering is a promising way to tune the electrical, electrochemical, magnetic, and optical properties of 2D materials, with the potential to achieve high‐performance 2D‐material‐based devices ultimately. This review discusses the experimental and theoretical results from recent advances in the strain engineering of 2D materials. Some novel methods to induce strain are summarized and then the tunable electrical and optical/optoelectronic properties of 2D materials via strain engineering are highlighted, including particularly the previously less‐discussed strain tuning of superconducting, magnetic, and electrochemical properties. Also, future perspectives of strain engineering are given for its potential applications in functional devices. The state of the survey presents the ever‐increasing advantages and popularity of strain engineering for tuning properties of 2D materials. Suggestions and insights for further research and applications in optical, electronic, and spintronic devices are provided.

     
    more » « less
  4. Abstract

    2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials.

     
    more » « less
  5. Abstract

    Since the first discovery of graphene, 2D materials are drawing tremendous attention due to their atomic thickness and superior properties. Fabrication of high‐quality micro‐/nanopatterns of 2D materials is essential for their applications in both nanoelectronics and nanophotonics. In this work, an all‐optical lithographic technique, optothermoplasmonic nanolithography (OTNL), is developed to achieve high‐throughput, versatile, and maskless patterning of different atomic layers. Low‐power (≈5 mW µm−2) and high‐resolution patterning of both graphene and MoS2monolayers is demonstrated through exploiting thermal oxidation and sublimation at the highly localized thermoplasmonic hotspots. Density functional theory simulations reveal that Au nanoparticles reduce the formation energy (≈0.6 eV) of C monovacancies through bonding between undercoordinated C and Au, leading to a significant Au‐catalyzed graphene oxidation and a reduction of the required laser operation power. Programmable patterning of 2D materials into complex and large‐scale nanostructures is further demonstrated. With its low‐power, high‐resolution, and versatile patterning capability, OTNL offers the possibility to scale up the fabrication of nanostructured 2D materials for many applications in photonic and electronic devices.

     
    more » « less