Neutron grating interferometry provides information on phase and small-angle scatter in addition to attenuation. Previously, phase grating moiré interferometers (PGMI) with two or three phase gratings have been developed. These phase-grating systems use the moiré far-field technique to avoid the need for high-aspect absorption gratings used in Talbot–Lau interferometers (TLI) that reduce the neutron flux reaching the detector. We first demonstrate, through theory and simulations, a novel phase grating interferometer system for cold neutrons that requires a single modulated phase grating (MPG) for phase-contrast imaging, as opposed to the two or three phase gratings in previously employed PGMI systems. The theory shows the dual modulation of MPG with a large period and a smaller carrier pitch P, resulting in large fringes at the detector. The theory was compared to the full Sommerfeld–Rayleigh diffraction integral simulator. Then, we proceeded to compare the MPG system to experiments in the literature that use a two-phase-grating-based PGMI with best-case visibility of around 39%. The simulations of the MPG system show improved visibility in comparison to that of the two-phase-grating-based PGMI. An MPG with a modulation period of 300 µm, the pitch of 2 µm, and grating heights with a phase modulation of (π,0, illuminated by a monochromatic beam produces visibility of 94.2% with a comparable source-to-detector distance (SDD) as the two-phase-grating-based PGMI. Phase sensitivity, another important performance metric of the grating interferometer, was compared to values available in the literature, viz. the conventional TLI with the phase sensitivity of 4.5 × 103 for an SDD of 3.5 m and a beam wavelength of 0.44 nm. For a range of modulation periods, the MPG system provides comparable or greater theoretical maximum phase sensitivity of 4.1 × 103 to 10.0 × 103 for SDDs of up to 3.5 m. This proposed MPG system appears capable of providing high-performance PGMI that obviates the need for the alignment of two phase gratings.
more »
« less
Reactive ion plasma etched surface relief gratings for low/medium/high resolution spectroscopy in astronomy
We report the fabrication of a binary-phase proof-of-concept astronomical diffraction grating embedded in a quartz substrate via reactive ion plasma etching. This grating operates at the first diffraction order within the 450 to 750 nm wavelength band. It features 1400-nm-deep, 188-nm-wide binary grooves at a 566-nm pitch, or 1767 lines/mm groove density, over a 25.4 × 25.4 mm2 area. A high depth-to-width ratio ( ∼ 8 ∶ 1 in this case) is one of the keys to near-theoretical diffraction efficiency being attained by the fabricated grating (94% at center wavelength and 70% at band edges) over a broad bandpass (>200 nm). This performance is also attributed to high-resolution micro-lithographic electron-beam patterning and anisotropic reactive ion etching process fabrication techniques. These types of binary gratings can potentially be high-throughput alternatives to Volume-Phase Holographic Gratings (VPHGs) for general spectroscopic applications. When scaled to appropriate sizes for astronomy, such gratings can serve as main or cross dispersion elements in low-, medium-, and high-resolution spectrographs not only in ground-based telescopes but also in those subject to challenging environmental conditions such as in space observatories.
more »
« less
- Award ID(s):
- 2107947
- PAR ID:
- 10558398
- Publisher / Repository:
- SPIE JATIS
- Date Published:
- Journal Name:
- Journal of Astronomical Telescopes, Instruments, and Systems
- Volume:
- 8
- Issue:
- 04
- ISSN:
- 2329-4124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling in two stages at two distinct wavelengths – as commonly used for loading, e.g., Sr or Yb atoms into optical lattice or tweezer clocks. Here, we optically characterize a wide variety of binary gratings at different wavelengths to find a simple empirical fit to experimental grating diffraction efficiency data in terms of dimensionless etch depth and period for various duty cycles. The model avoids complex 3D light-grating surface calculations, yet still yields results accurate to a few percent across a broad range of parameters. Gratings optimized for two (or more) wavelengths can now be designed in an informed manner suitable for a wide class of atomic species enabling advanced quantum technologies.more » « less
-
A grating coupler on 700-nm-thick Z-cut lithium-niobate-on-insulator platform with high coupling efficiency, large bandwidth, and high fabrication tolerance is designed and optimized by inverse design method. The optimized grating coupler is fabricated with a single set of e-beam lithography and etching process, and it is experimentally characterized to possess peak coupling efficiency of −3.8 dB at 1574.93 nm, 1 dB bandwidth of 71.7 nm, and 3 dB bandwidth of over 120 nm, respectively.more » « less
-
We introduce and experimentally demonstrate a miniaturized integrated spectrometer operating over a broad bandwidth in the short-wavelength infrared (SWIR) spectrum that combines an add-drop ring resonator narrow band filter with a distributed Bragg reflector (DBR) based broadband filter realized in a silicon photonic platform. The contra-directional coupling DBR filter in this design consists of a pair of waveguide sidewall gratings that act as a broadband filter (i.e., 3.9 nm). The re-directed beam is then fed into the ring resonator which functions as a narrowband filter (i.e., 0.121 nm). In this scheme the free spectral range (FSR) limitation of the ring resonator is overcome by using the DBR as a filter to isolate a single ring resonance line. The overall design of the spectrometer is further simplified by simultaneously tuning both components through the thermo-optic effect. Moreover, several ring-grating spectrometer cells with different central wavelengths can be stacked in cascade in order to cover a broader spectrum bandwidth. This can be done by centering each unit cell on a different center wavelength such that the maximum range of one-unit cell corresponds to the minimum range of the next unit cell. This configuration enables high spectral resolution over a large spectral bandwidth and high extinction ratio (ER), making it suitable for a wide variety of applications.more » « less
-
Diffractive optics are structured optical surfaces that manipulate light based on the principles of interference and diffraction. By carefully designing the diffractive optical elements, the amplitude, phase, direction, and polarization of the transmitted and reflected light can be controlled. It is well-known that the propagation of light through diffractive optics is sensitive to changes in their structural parameters. In this study, a numerical analysis is conducted to evaluate the capabilities of slanted-wire diffraction gratings to function opto-mechanically in the infrared spectral range. The slanted wire array is designed such that it is compatible with fabrication by two-photon polymerization, a direct laser-writing approach. The modeled optical and mechanical capabilities of the diffraction grating are presented. The numerical results demonstrate a high sensitivity of the diffracted light to changes in the slant angle of the wires. The compressive force by which desired slant angles may be achieved as a function of the number of wires in the grating is investigated. The ability to fabricate the presented design using two-photon polymerization is supported by the development of a prototype. The results of this study suggest that slanted-wire gratings fabricated using two-photon polymerization may be effective in applications such as tunable beam splitting and micro-mechanical sensing.more » « less
An official website of the United States government

