Integrated diffraction gratings offer a compact route to magneto-optical traps (MOTs) for atom cooling and trapping, thus preparing MOTs for future scalable quantum systems. While segmented tri-gratings ensure axial radiation pressure balance, they are limited in optical trapping volume. Planar 2D gratings, though offer larger trapping regions, suffer from low diffraction efficiency and the resulting axial pressure imbalance, necessitating the use of a neutral density (ND) filter to achieve this balance. We present a numerically optimized 2D diffraction grating design that overcomes these limitations and satisfies the required optical conditions for laser cooling, namely, radiation pressure balance, specular reflection cancellation, and circular polarization handedness reversal upon diffraction, thus achieving an optical molasses – a necessary condition in MOT. Using Rigorous Coupled Wave Analysis (RCWA) and a Genetic Algorithm (GA), we design a grating for (_ ^87)Rb grating MOT (GMOT) that achieves a 24% first-order diffraction efficiency, of which 99.7% have the correct circular handedness. These properties enable efficient atom cooling without an ND filter when used with a flat-top beam inside the vacuum chamber. Our design simplifies optical alignment, reduces system footprint, and advances the integration of GMOTs into compact quantum devices.
more »
« less
Optimal binary gratings for multi-wavelength magneto-optical traps
Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling in two stages at two distinct wavelengths – as commonly used for loading, e.g., Sr or Yb atoms into optical lattice or tweezer clocks. Here, we optically characterize a wide variety of binary gratings at different wavelengths to find a simple empirical fit to experimental grating diffraction efficiency data in terms of dimensionless etch depth and period for various duty cycles. The model avoids complex 3D light-grating surface calculations, yet still yields results accurate to a few percent across a broad range of parameters. Gratings optimized for two (or more) wavelengths can now be designed in an informed manner suitable for a wide class of atomic species enabling advanced quantum technologies.
more »
« less
- PAR ID:
- 10507286
- Publisher / Repository:
- Optica Publishing
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 24
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 40871
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans (Ed.)Diffraction gratings are ubiquitous in many optical applications such as sensors, filters, and optical security devices. Capillary force lithography, which utilizes the capillary rise of photopolymer into nanoscale cavities, is a simple and rapid method to construct diffraction gratings without necessitating expensive instruments or complex steps. With the help of spatial light modulators, such as the digital micromirror device, the height of the grating can also be spatially modulated, printing spatially height-modulated gratings. When white light normally impinges on the grating, the light propagates into the grating interferes with light that propagates into air. By varying the height of the grating, the optical path lengths of two lights can be varied, leading to different interference effects and structural coloring. Judicious design of the grating’s parameters and patterning process will even allow encoding of multiple images. In this work, by tuning the height of the grating through the light-controlled capillary force lithography, we demonstrate grating-based structural color printing. This technique is promising for producing the custom patterns for anti-counterfeiting, authentication, and cryptography.more » « less
-
We report the fabrication of a binary-phase proof-of-concept astronomical diffraction grating embedded in a quartz substrate via reactive ion plasma etching. This grating operates at the first diffraction order within the 450 to 750 nm wavelength band. It features 1400-nm-deep, 188-nm-wide binary grooves at a 566-nm pitch, or 1767 lines/mm groove density, over a 25.4 × 25.4 mm2 area. A high depth-to-width ratio ( ∼ 8 ∶ 1 in this case) is one of the keys to near-theoretical diffraction efficiency being attained by the fabricated grating (94% at center wavelength and 70% at band edges) over a broad bandpass (>200 nm). This performance is also attributed to high-resolution micro-lithographic electron-beam patterning and anisotropic reactive ion etching process fabrication techniques. These types of binary gratings can potentially be high-throughput alternatives to Volume-Phase Holographic Gratings (VPHGs) for general spectroscopic applications. When scaled to appropriate sizes for astronomy, such gratings can serve as main or cross dispersion elements in low-, medium-, and high-resolution spectrographs not only in ground-based telescopes but also in those subject to challenging environmental conditions such as in space observatories.more » « less
-
Neutron grating interferometry provides information on phase and small-angle scatter in addition to attenuation. Previously, phase grating moiré interferometers (PGMI) with two or three phase gratings have been developed. These phase-grating systems use the moiré far-field technique to avoid the need for high-aspect absorption gratings used in Talbot–Lau interferometers (TLI) that reduce the neutron flux reaching the detector. We first demonstrate, through theory and simulations, a novel phase grating interferometer system for cold neutrons that requires a single modulated phase grating (MPG) for phase-contrast imaging, as opposed to the two or three phase gratings in previously employed PGMI systems. The theory shows the dual modulation of MPG with a large period and a smaller carrier pitch P, resulting in large fringes at the detector. The theory was compared to the full Sommerfeld–Rayleigh diffraction integral simulator. Then, we proceeded to compare the MPG system to experiments in the literature that use a two-phase-grating-based PGMI with best-case visibility of around 39%. The simulations of the MPG system show improved visibility in comparison to that of the two-phase-grating-based PGMI. An MPG with a modulation period of 300 µm, the pitch of 2 µm, and grating heights with a phase modulation of (π,0, illuminated by a monochromatic beam produces visibility of 94.2% with a comparable source-to-detector distance (SDD) as the two-phase-grating-based PGMI. Phase sensitivity, another important performance metric of the grating interferometer, was compared to values available in the literature, viz. the conventional TLI with the phase sensitivity of 4.5 × 103 for an SDD of 3.5 m and a beam wavelength of 0.44 nm. For a range of modulation periods, the MPG system provides comparable or greater theoretical maximum phase sensitivity of 4.1 × 103 to 10.0 × 103 for SDDs of up to 3.5 m. This proposed MPG system appears capable of providing high-performance PGMI that obviates the need for the alignment of two phase gratings.more » « less
-
Diffractive optics are structured optical surfaces that manipulate light based on the principles of interference and diffraction. By carefully designing the diffractive optical elements, the amplitude, phase, direction, and polarization of the transmitted and reflected light can be controlled. It is well-known that the propagation of light through diffractive optics is sensitive to changes in their structural parameters. In this study, a numerical analysis is conducted to evaluate the capabilities of slanted-wire diffraction gratings to function opto-mechanically in the infrared spectral range. The slanted wire array is designed such that it is compatible with fabrication by two-photon polymerization, a direct laser-writing approach. The modeled optical and mechanical capabilities of the diffraction grating are presented. The numerical results demonstrate a high sensitivity of the diffracted light to changes in the slant angle of the wires. The compressive force by which desired slant angles may be achieved as a function of the number of wires in the grating is investigated. The ability to fabricate the presented design using two-photon polymerization is supported by the development of a prototype. The results of this study suggest that slanted-wire gratings fabricated using two-photon polymerization may be effective in applications such as tunable beam splitting and micro-mechanical sensing.more » « less
An official website of the United States government

