Abstract We studyℓ∞norms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith . For general eigenfunctions we show the upper bound . Here the semiclassical parameter is . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points.
more »
« less
Ultra-High-Energy Cosmic Rays Accelerated by Magnetically Dominated Turbulence
Abstract Ultra-high-energy cosmic rays (UHECRs), particles characterized by energies exceeding 1018eV, are generally believed to be accelerated electromagnetically in high-energy astrophysical sources. One promising mechanism of UHECR acceleration is magnetized turbulence. We demonstrate from first principles, using fully kinetic particle-in-cell simulations, that magnetically dominated turbulence accelerates particles on a short timescale, producing a power-law energy distribution with a rigidity-dependent, sharply defined cutoff well approximated by the form . Particle escape from the turbulent accelerating region is energy dependent, withtesc∝E−δandδ∼ 1/3. The resulting particle flux from the accelerator follows , withs∼ 2.1. We fit the Pierre Auger Observatory’s spectrum and composition measurements, taking into account particle interactions between acceleration and detection, and show that the turbulence-associated energy cutoff is well supported by the data, with the best-fitting spectral index being . Our first-principles results indicate that particle acceleration by magnetically dominated turbulence may constitute the physical mechanism responsible for UHECR acceleration.
more »
« less
- PAR ID:
- 10558516
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 977
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L18
- Size(s):
- Article No. L18
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum with the Green’s function , which describes the monoenergetic spectrum solution in which asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time in the shear flow region 0 <r<r2, and , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at (r,p) originated fromr→ ∞ with momentum . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.more » « less
-
Abstract We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizationsσ≲ 10−4and pair-loading factorsZ±≲ 10 are studied, whereZ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσexceeds a critical valueσLthat decreases withZ±. Atσ≲σLthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ±, leading to lowerσL. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales as . (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ≈ 5 × 10−6. The ions then become essentially thermal with mean energy , while electrons form a nonthermal tail, extending from to . Whenσ= 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.more » « less
-
Abstract Recent observations by the Parker Solar Probe (PSP) suggest that protons and heavier ions are accelerated to high energies by magnetic reconnection at the heliospheric current sheet (HCS). By solving the energetic particle transport equation in large-scale MHD simulations, we study the compression acceleration of protons and heavier ions in the reconnecting HCS. We find that the acceleration of multispecies ions results in nonthermal power-law distributions with a spectral index consistent with the PSP observations. Our study shows that the high-energy cutoff of protons can reach –1 MeV depending on the particle diffusion coefficients. We also study how the high-energy cutoff of different ion species scales with the charge-to-mass ratio . When determining the diffusion coefficients from the quasi-linear theory with a Kolmogorov magnetic power spectrum, we find thatα∼ 0.4, which is somewhat smaller thanα∼ 0.7 observed by PSP.more » « less
-
Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.more » « less
An official website of the United States government
