Abstract A modest fraction of the stars in galactic nuclei fed toward the central supermassive black hole (SMBH) approach on low-eccentricity orbits driven by gravitational-wave radiation (extreme mass ratio inspiral (EMRI)). In the likely event that a gaseous accretion disk is created in the nucleus during this slow inspiral (e.g., via an independent tidal disruption event (TDE)), star–disk collisions generate regular short-lived flares consistent with the observed quasiperiodic eruption (QPE) sources. We present a model for the coupled star-disk evolution, which self-consistently accounts for mass and thermal energy injected into the disk from stellar collisions and associated mass ablation. For weak collision/ablation heating, the disk is thermally unstable and undergoes limit-cycle oscillations, which modulate its properties and lead to accretion-powered outbursts on timescales of years to decades, with a time-averaged accretion rate ∼0.1Ṁ Edd. Stronger collision/ablation heating acts to stabilize the disk, enabling roughly steady accretion at the EMRI-stripping rate. In either case, the stellar destruction time through ablation, and hence the maximum QPE lifetime, is ∼102–103yr, far longer than fallback accretion after a TDE. The quiescent accretion disks in QPE sources may at the present epoch be self-sustaining and fed primarily by EMRI ablation. Indeed, the observed range of secular variability broadly matches those predicted for collision-fed disks. Changes in the QPE recurrence pattern following such outbursts, similar to that observed in GSN 069, could arise from temporary misalignment between the EMRI-fed disk and the SMBH equatorial plane as the former regrows its mass after a state transition.
more »
« less
FORGE’d in FIRE III: The IMF in Quasar Accretion Disks from STARFORGE
Recently, we demonstrated self-consistent formation of strongly-magnetized quasar accretion disks (QADs) from cosmological radiation-magnetohydrodynamic-thermochemical galaxy-star formation simulations, including the full STARFORGE physics shown previously to produce a reasonable IMF under typical ISM conditions. Here we study star formation and the stellar IMF in QADs, on scales from 100 au to 10 pc from the SMBH. We show it is critical to include physics often previously neglected, including magnetic fields, radiation, and (proto)stellar feedback. Closer to the SMBH, star formation is suppressed, but the (rare) stars that do form exhibit top-heavy IMFs. Stars can form only in special locations (e.g. magnetic field switches) in the outer QAD. Protostars accrete their natal cores rapidly but then dynamically decouple from the gas and ‘wander,’ ceasing accretion on timescales ~100 yr. Their jets control initial core accretion, but the ejecta are ‘swept up’ into the larger-scale QAD flow without much dynamical effect. The strong tidal environment strongly suppresses common-core multiplicity. The IMF shape depends sensitively on un-resolved dynamics of protostellar disks (PSDs), as the global dynamical times can become incredibly short (< yr) and tidal fields are incredibly strong, so whether PSDs can efficiently transport angular momentum or fragment catastrophically at <10 au scales requires novel PSD simulations to properly address. Most analytic IMF models and analogies with planet formation in PSDs fail qualitatively to explain the simulation IMFs, though we discuss a couple of viable models.
more »
« less
- PAR ID:
- 10558830
- Publisher / Repository:
- Open Journal of Astrophysics, Arxiv
- Date Published:
- Journal Name:
- The Open Journal of Astrophysics
- Volume:
- 7
- ISSN:
- 2565-6120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Orion Nebula Cluster (ONC) is the nearest dense star-forming region at ∼400 pc away, making it an ideal target to study the impact of high stellar density and proximity to massive stars (the Trapezium) on protoplanetary disk evolution. The OMC1 molecular cloud is a region of high extinction situated behind the Trapezium in which actively forming stars are shielded from the Trapezium’s strong radiation. In this work, we survey disks at high resolution with Atacama Large Millimeter/submillimeter Array at three wavelengths with resolutions of 0.″095 (3 mm; Band 3), 0.″048 (1.3 mm; Band 6), and 0.″030 (0.85 mm; Band 7) centered on radio Source I. We detect 127 sources, including 15 new sources that have not previously been detected at any wavelength. 72 sources are spatially resolved at 3 mm, with sizes from ∼8–100 au. We classify 76 infrared-detected sources as foreground ONC disks and the remainder as embedded OMC1 disks. The two samples have similar disk sizes, but the OMC1 sources have a dense and centrally concentrated spatial distribution, indicating they may constitute a spatially distinct subcluster. We find smaller disk sizes and a lack of large (>75 au) disks in both our samples compared to other nearby star-forming regions, indicating that environmental disk truncation processes are significant. While photoevaporation from nearby massive Trapezium stars may account for the smaller disks in the ONC, the embedded sources in OMC1 are hidden from this radiation and thus must truncated by some other mechanism, possibly dynamical truncation or accretion-driven contraction.more » « less
-
ABSTRACT One of the key mysteries of star formation is the origin of the stellar initial mass function (IMF). The IMF is observed to be nearly universal in the Milky Way and its satellites, and significant variations are only inferred in extreme environments, such as the cores of massive elliptical galaxies and the Central Molecular Zone. In this work, we present simulations from the STARFORGE project that are the first cloud-scale radiation-magnetohydrodynamic simulations that follow individual stars and include all relevant physical processes. The simulations include detailed gas thermodynamics, as well as stellar feedback in the form of protostellar jets, stellar radiation, winds, and supernovae. In this work, we focus on how stellar radiation, winds, and supernovae impact star-forming clouds. Radiative feedback plays a major role in quenching star formation and disrupting the cloud; however, the IMF peak is predominantly set by protostellar jet physics. We find that the effect of stellar winds is minor, and supernovae ‘occur too late’ to affect the IMF or quench star formation. We also investigate the effects of initial conditions on the IMF. We find that the IMF is insensitive to the initial turbulence, cloud mass, and cloud surface density, even though these parameters significantly shape the star formation history of the cloud, including the final star formation efficiency. Meanwhile, the characteristic stellar mass depends weakly on metallicity and the interstellar radiation field, which essentially set the average gas temperature. Finally, while turbulent driving and the level of magnetization strongly influence the star formation history, they only influence the high-mass slope of the IMF.more » « less
-
The stellar initial mass function (IMF) is critical to our understanding of star formation and the effects of young stars on their environment. On large scales, it enables us to use tracers such as UV or Hα emission to estimate the star formation rate of a system and interpret unresolved star clusters across the Universe. So far, there is little firm evidence of large-scale variations of the IMF, which is thus generally considered “universal”. Stars form from cores, and it is now possible to estimate core masses and compare the core mass function (CMF) with the IMF, which it presumably produces. The goal of the ALMA-IMF large programme is to measure the core mass function at high linear resolution (2700 au) in 15 typical Milky Way protoclusters spanning a mass range of 2.5 × 103to 32.7 × 103M⊙. In this work, we used two different core extraction algorithms to extract ≈680 gravitationally bound cores from these 15 protoclusters. We adopted a per core temperature using the temperature estimate from the point-process mapping Bayesian method (PPMAP). A power-law fit to the CMF of the sub-sample of cores above the 1.64M⊙completeness limit (330 cores) through the maximum likelihood estimate technique yields a slope of 1.97 ± 0.06, which is significantly flatter than the 2.35 Salpeter slope. Assuming a self-similar mapping between the CMF and the IMF, this result implies that these 15 high-mass protoclusters will generate atypical IMFs. This sample currently is the largest sample that was produced and analysed self-consistently, derived at matched physical resolution, with per core temperature estimates, and cores as massive as 150M⊙. We provide both the raw source extraction catalogues and the catalogues listing the source size, temperature, mass, spectral indices, and so on in the 15 protoclusters.more » « less
-
Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.more » « less
An official website of the United States government

