skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The elephant in the room: the importance of the details of massive star formation in molecular clouds
Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.  more » « less
Award ID(s):
1715847 1713353
PAR ID:
10112708
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
488
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2970 to 2975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We present a large suite of MHD simulations of turbulent, star-forming giant molecular clouds (GMCs) with stellar feedback, extending previous work by simulating 10 different random realizations for each point in the parameter space of cloud mass and size. It is found that once the clouds disperse due to stellar feedback, both self-gravitating star clusters and unbound stars generally remain, which arise from the same underlying continuum of substructured stellar density, ie. the hierarchical cluster formation scenario. The fraction of stars that are born within gravitationally-bound star clusters is related to the overall cloud star formation efficiency set by stellar feedback, but has significant scatter due to stochastic variations in the small-scale details of the star-forming gas flow. We use our numerical results to calibrate a model for mapping the bulk properties (mass, size, and metallicity) of self-gravitating GMCs onto the star cluster populations they form, expressed statistically in terms of cloud-level distributions. Synthesizing cluster catalogues from an observed GMC catalogue in M83, we find that this model predicts initial star cluster masses and sizes that are in good agreement with observations, using only standard IMF and stellar evolution models as inputs for feedback. Within our model, the ratio of the strength of gravity to stellar feedback is the key parameter setting the masses of star clusters, and of the various feedback channels direct stellar radiation (photon momentum and photoionization) is the most important on GMC scales. 
    more » « less
  2. ABSTRACT We present a novel set of stellar feedback models, implemented in the moving-mesh code arepo, designed for galaxy formation simulations with near-parsec (or better) resolution. These include explicit sampling of stars from the IMF, allowing feedback to be linked to individual massive stars, an improved method for the modelling of H ii regions, photoelectric (PE) heating from a spatially varying FUV field and supernova feedback. We perform a suite of 32 simulations of isolated $$M_\mathrm{vir} = 10^{10}\, \mathrm{M_\odot }$$ galaxies with a baryonic mass resolution of $$20\, \mathrm{M_\odot }$$ in order to study the non-linear coupling of the different feedback channels. We find that photoionization (PI) and supernova feedback are both independently capable of regulating star formation to the same level, while PE heating is inefficient. PI produces a considerably smoother star formation history than supernovae. When all feedback channels are combined, the additional suppression of star formation rates is minor. However, outflow rates are substantially reduced relative to the supernova only simulations. We show that this is directly caused by a suppression of supernova clustering by the PI feedback, disrupting star-forming clouds prior to the first supernovae. We demonstrate that our results are robust to variations of our star formation prescription, feedback models and the baryon fraction of the galaxy. Our results also imply that the burstiness of star formation and the mass loading of outflows may be overestimated if the adopted star particle mass is considerably larger than the mass of individual stars because this imposes a minimum cluster size. 
    more » « less
  3. ABSTRACT One of the key mysteries of star formation is the origin of the stellar initial mass function (IMF). The IMF is observed to be nearly universal in the Milky Way and its satellites, and significant variations are only inferred in extreme environments, such as the cores of massive elliptical galaxies and the Central Molecular Zone. In this work, we present simulations from the STARFORGE project that are the first cloud-scale radiation-magnetohydrodynamic simulations that follow individual stars and include all relevant physical processes. The simulations include detailed gas thermodynamics, as well as stellar feedback in the form of protostellar jets, stellar radiation, winds, and supernovae. In this work, we focus on how stellar radiation, winds, and supernovae impact star-forming clouds. Radiative feedback plays a major role in quenching star formation and disrupting the cloud; however, the IMF peak is predominantly set by protostellar jet physics. We find that the effect of stellar winds is minor, and supernovae ‘occur too late’ to affect the IMF or quench star formation. We also investigate the effects of initial conditions on the IMF. We find that the IMF is insensitive to the initial turbulence, cloud mass, and cloud surface density, even though these parameters significantly shape the star formation history of the cloud, including the final star formation efficiency. Meanwhile, the characteristic stellar mass depends weakly on metallicity and the interstellar radiation field, which essentially set the average gas temperature. Finally, while turbulent driving and the level of magnetization strongly influence the star formation history, they only influence the high-mass slope of the IMF. 
    more » « less
  4. Star clusters stand at the crossroads between galaxies and single stars. Resolving the formation of star clusters in cosmological simulations represents an ambitious and challenging goal, since modelling their internal properties requires very high resolution. This paper is the third of a series within the SImulating the Environment where Globular clusters Emerged (SIEGE) project, where we conduct zoom-in cosmological simulations with sub-parsec resolution that include the feedback of individual stars, aimed to model the formation of star clusters in high-redshift proto-galaxies. We investigate the role of three fundamental quantities in shaping the intrinsic properties of star clusters, i.e., (i) pre-supernova stellar feedback (continuous or instantaneous ejection of mass and energy through stellar winds); (ii) star formation efficiency, defined as the fraction of gas converted into stars per freefall time, for which we test 2 different values (ϵff= 0.1 and 1), and (iii) stellar initial mass function (IMF, standard vs top-heavy). All our simulations are run down toz= 10.5, which is sufficient for investigating some structural properties of the emerging clumps and clusters. Among the analysed quantities, the gas properties are primarily sensitive to the feedback prescriptions. A gentle and continuous feedback from stellar winds originates a complex, filamentary cold gas distribution, opposite to explosive feedback, causing smoother clumps. The prescription for a continuous, low-intensity feedback, along with the adoption of ϵff= 1, also produces star clusters with maximum stellar density values up to 104Mʘpc−2, in good agreement with the surface density-size relation observed in local young star clusters (YSCs). Therefore, a realistic stellar wind description and a high star formation effiency are the key ingredients that allow us to achieve realistic star clusters characterised by properties comparable to those of local YSCs. In contrast, the other models produce too diffuse clusters, in particular the one with a top-heavy IMF. 
    more » « less
  5. null (Ed.)
    ABSTRACT Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the gizmo code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs ($$\mathcal {M} \sim 10\!-\!50$$). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find $$M_\mathrm{50} \,\, \buildrel\propto \over \sim \,\,M_\mathrm{0} \mathcal {M}^{-3} \alpha _\mathrm{turb}\, \mathrm{SFE}^{1/3}$$ for GMC mass M0, sonic Mach number $$\mathcal {M}$$, virial parameter αturb, and star formation efficiency SFE = M⋆/M0. This fit agrees well with previous IMF results from the ramses, orion2, and sphng codes. Although M50 has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be $$\gt 20 \, \mathrm{M}_{\odot }$$, an order of magnitude larger than observed ($$\sim 2 \, \mathrm{M}_\odot$$), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF. 
    more » « less