skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mm-Wave Beam Steering Antennas Using Stacked Parallel Plate Lens Antenna Subarrays
A millimeter (mm)-wave beam steering antenna consisting of subarrays of parallel plate lenses is presented for the first time. As compared to a previously reported antenna that utilized subarrays of dielectric slab waveguide lenses, the presented antenna allows to design and control the beamwidth of the radiation pattern in the plane orthogonal to the beam steering plane by stacking the parallel plate lens subarrays. Additionally, full wave simulations of the presented antenna show performance improvements in gain, side lobe level, and field of view in comparison to the previously reported dielectric slab waveguide-based realization.  more » « less
Award ID(s):
1923857
PAR ID:
10558833
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-4228-2
Page Range / eLocation ID:
93 to 94
Subject(s) / Keyword(s):
phased antenna arrays mm-wave lens antennas subarrays
Format(s):
Medium: X
Location:
Portland, OR, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a compact phased-array antenna for efficient and high-gain millimeter-wave-based 3D beam steering applications. The proposed antenna array consists of 2 × 2 unit cells and each unit cell is a sub-array comprising of 2 × 2 patch elements connected to microstrip lines that are co-fed by a single coaxial cable. Two 45° phase shifting lines are incorporated in each sub-array to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna are 24 × 24 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 58.4 GHz with an operational bandwidth from 50.1 GHz to 77.5 GHz along with a high gain of 26.8 dBi. The array exhibits a maximum beam steering range of 105° in the elevation plane and 195° in the azimuth plane with a gain variation less than 0.9 dBi. 
    more » « less
  2. This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper. 
    more » « less
  3. In this paper, a new waveguide-fed Antipodal Vivaldi Antenna (AVA) for mm-wave imaging applications is presented. A waveguide-to-broadside coupled Antipodal finline transition is designed to couple the dominant mode of a WR-12 waveguide into the AVA. The transition provides a wideband and low insertion loss in the entire E-band. A dielectric lens is added in front of the AVA to increase the directivity in theendfire direction of the antenna. The performance of the designed antenna is evaluated in the E-band in terms of its return loss,gain, and radiation pattern. 
    more » « less
  4. In this paper, a 4 ×4-element waveguide-aperture array antenna is designed for applications in the 60 GHz band. To simplify the design process of the feed network, instead of using a conventional waveguide power divider, an efficient approach is proposed where the antenna is fed with two layers of back cavities to distribute power uniformly among the array aperture. The connection between cavities is obtained by a set of coupling slots. A standard WR-15 rectangular waveguide is designed to excite the antenna at the input port over the operating frequency. Furthermore, to improve the antenna gain characteristics and reduce size, array aperture is loaded with a dielectric plate. The most significant advantage of using this design is its efficient radiation patterns and the ability to decrease complexity of feeding network. Simulated results demonstrate that the antenna gain is larger than 25 dB over the frequency range from 58 to 64 GHz. This high gain antenna combined with the simplicity of feeding network is greatly advantageous to millimeter wave applications. 
    more » « less
  5. Raynal, Ann M.; Ranney, Kenneth I. (Ed.)
    Control of orbital angular momentum (OAM) offers the potential for increases in control, sensitivity, and security for high-performance microwave systems. OAM is characterized by an integer OAM mode where zero represents the case of a plane wave. Microwaves with a nonzero OAM mode propagate with a helical wavefront. Orthogonal OAM modes can be used to carry distinct information at the same frequency and polarization, increasing the data rate. The OAM waveform may also increase radar detection capability for certain shaped objects. OAM can be induced by broadcasting a plane wave through a spatial phase plate (SPP) dielectric which introduces an azimuthally dependent phase delay. However, SPPs are frequency-specific, which presents an obstacle for harnessing OAM in frequency-modulated communication systems and wide-bandwidth radar. In this study, we develop a circular phased array to synthesize the desired vortex-shaped wavefront. This approach offers a critical advantage: the phases of all antenna elements are easily programmable under different frequencies. As a result, transmission and reception of the OAM beam can be controlled with great flexibility, making it operable over a wide frequency spectrum, which leverages OAM radar functionality and performance. In this paper, we will investigate a wide-bandwidth radar with OAM mode-control and signal processing. 
    more » « less