Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20M⊙and surrounding envelope masses of ∼100M⊙. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9M⊙and associated massive (∼90M⊙) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows. 
                        more » 
                        « less   
                    
                            
                            Isolated Massive Star Formation in G28.20-0.05
                        
                    
    
            Abstract We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30αemission, this structure mainly traces ionized gas. However, there is evidence for ∼30M⊙of dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80M⊙. A strong velocity gradient in the H30αemission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass ofm*∼ 40M⊙forming from a core with initial massMc∼ 300M⊙in a clump with mass surface density of Σcl∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1M⊙found from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2206450
- PAR ID:
- 10559041
- Publisher / Repository:
- AAS/IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 939
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30αrecombination line emission. The H30αline kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free–free fluxes and the H30αtotal fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hiiregions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation.more » « less
- 
            Context. The Milky Way’s central molecular zone (CMZ) has been measured to form stars ten times less efficiently than in the Galactic disk, based on emission from high-mass stars. However, the CMZ’s low-mass (⩽2M⊙) protostellar population, which accounts for most of the initial stellar mass budget and star formation rate (SFR), is poorly constrained observationally due to limited sensitivity and resolution. Aims. We aim to perform a cloud-wide census of the protostellar population in three massive CMZ clouds. Methods. We present the Dual-band Unified Exploration of three CMZ Clouds (DUET) survey, targeting the 20 km s−1cloud, Sgr C, and the dust ridge cloud “e” using the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 and 3 mm. The mosaicked observations achieve a comparable resolution of 0.′′2–0.′′3 (∼2000 au) and a sky coverage of 8.3–10.4 arcmin2, respectively. Results. We report 563 continuum sources at 1.3 mm and 330 at 3 mm, respectively, and a dual-band catalog with 450 continuum sources. These sources are marginally resolved at a resolution of 2000 au. We find a universal deviation (>70% of the source sample) from commonly used dust modified blackbody (MBB) models, characterized by either low spectral indices or low brightness temperatures. Conclusions. Three possible explanations are discussed for the deviation. (1) Optically thick class 0/I young stellar objects (YSOs) with a very small beam filling factor can lead to lower brightness temperatures than what MBB models predict. (2) Large dust grains with millimeter or centimeter in size have more significant self-scattering, and frequency-dependent albedo could therefore cause lower spectral indices. (3) Free-free emission over 30 μJy can severely contaminate dust emission and cause low spectral indices for milliJansky sources, although the number of massive protostars (embedded UCHIIregions) needed is infeasibly high for the normal stellar initial mass function. A reliable measurement of the SFR at low protostellar masses will require future work to distinguish between these possible explanations.more » « less
- 
            Context.One of the central questions in astrophysics is the origin of the initial mass function (IMF). It is intrinsically linked to the processes from which it originates, and hence its connection with the core mass function (CMF) must be elucidated. Aims.We aim to measure the CMF in the evolved W33-Main star-forming protocluster to compare it with CMF recently obtained in other Galactic star-forming regions, including the ones that are part of the ALMA-IMF program. Methods.We used observations from the ALMA-IMF large programme: ~2′ × 2′ maps of emission from the continuum and selected lines at 1.3 mm and 3 mm observed by the ALMA 12m only antennas. Our angular resolution was typically 1″, that is, ~2400 au at a distance of 2.4 kpc. The lines we analysed are CO (2–1), SiO (5–4), N2H+ (1–0), H41α as well as He41α blended with C41α. We built a census of dense cores in the region, and we measured the associated CMF based on a core-dependent temperature value. Results.We confirmed the ‘evolved’ status of W33-Main by identifiying three HIIregions within the field, and to a lesser extent based on the number and extension of N2H+filaments. We produced a filtered core catalogue of 94 candidates that we refined to take into account the contamination of the continuum by free-free and line emission, obtaining 80 cores with masses that range from 0.03 to 13.2M⊙. We fitted the resulting high-mass end of the CMF with a single power law of the form N(log(M)) ∝ Mα, obtainingα= −1.44−0.22+0.16, which is slightly steeper but consistent with the Salpeter index. We categorised our cores as prestellar and protostellar, mostly based on outflow activity and hot core nature. We found the prestellar CMF to be steeper than a Salpeter-like distribution, and the protostellar CMF to be slightly top heavy. We found a higher proportion of cores within the HIIregions and their surroundings than in the rest of the field. We also found that the cores’ masses were rather low (maximum mass of ~13M⊙). Conclusions.We find that star formation in W33-Main could be compatible with a ‘clump-fed’ scenario of star formation in an evolved cloud characterised by stellar feedback in the form of HIIregions, and under the influence of massive stars outside the field. Our results differ from those found in less evolved young star-forming regions in the ALMA-IMF program. Further investigations are needed to elucidate the evolution of late CMFs towards the IMF over statistically significant samples.more » « less
- 
            Context.Hot cores are signposts of the protostellar activity of dense cores in star-forming regions. W43-MM1 is a young region that is very rich in terms of high-mass star formation, which is highlighted by the presence of large numbers of high-mass cores and outflows. Aims.We aim to systematically identify the massive cores in W43-MM1 that contain a hot core and compare their molecular composition. Methods.We used Atacama Large Millimeter/sub-millimeter Array (ALMA) high-spatial resolution (~2500 au) data to identify line-rich protostellar cores and carried out a comparative study of their temperature and molecular composition. Here, the identification of hot cores is based on both the spatial distribution of the complex organic molecules and the contribution of molecular lines relative to the continuum intensity. We rely on the analysis of CH3CN and CH3CCH to estimate the temperatures of the selected cores. Finally, we rescale the spectra of the different hot cores based on their CH3OCHO line intensities to directly compare the detections and line intensities of the other species. Results.W43-MM1 turns out to be a region that is rich in massive hot cores. It contains at least one less massive (core #11, 2M⊙) and seven massive (16−100M⊙) hot cores. The excitation temperature of CH3CN, whose emission is centred on the cores, is of the same order for all of them (120–160 K). There is a factor of up to 30 difference in the intensity of the lines of complex organic molecules (COMs). However the molecular emission of the hot cores appears to be the same or within a factor of 2–3. This suggests that these massive cores, which span about an order of magnitude in core mass, have a similar chemical composition and show similar excitation of most of the COMs. In contrast, CH3CCH emission is found to preferentially trace the envelope, with a temperature ranging from 50 K to 90 K. Lines in core #11 are less optically thick, which makes them proportionally more intense compared to the continuum than lines observed in the more massive hot cores. Core #1, the most massive hot core of W43-MM1, shows a richer line spectrum than the other cores in our sample, in particular in N-bearing molecules and ethylene glycol lines. In core #2, the emission of O-bearing molecules, such as OCS, CH3OCHO, and CH3OH, does not peak at the dust continuum core centre; the blueshifted and redshifted emission corresponds to the outflow lobes, suggesting formation via sublimation of the ice mantles through shocks or UV irradiation on the walls of the cavity. These data establish a benchmark for the study of other massive star-formation regions and hot cores.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    