skip to main content


Title: The sharpest view on the high-mass star-forming region S255IR: Near infrared adaptive optics imaging of the outbursting source NIRS3

Context.Massive stars have an impact on their surroundings from early in their formation until the end of their lives. However, very little is known about their formation. Episodic accretion may play a crucial role in the process, but only a handful of observations have reported such events occurring in massive protostars.

Aims.We aim to investigate the outburst event from the high-mass star-forming region S255IR where the protostar NIRS3 recently underwent an accretion outburst. We follow the evolution of this source both in photometry and morphology of its surroundings.

Methods.We performed near infrared adaptive optics observations on the S255IR central region using the Large Binocular Telescope in theKsbroadband as well as the H2and Brγ narrow-band filters with an angular resolution of ~07″.06, close to the diffraction limit.

Results.We discovered a new near infrared knot north-east of NIRS3 that we interpret as a jet knot that was ejected during the last accretion outburst and observed in the radio regime as part of a follow-up after the outburst. We measured a mean tangential velocity for this knot of 450 ± 50 km s−1. We analysed the continuum-subtracted images from H2, which traces jet-shocked emission, and Brγ, which traces scattered light from a combination of accretion activity and UV radiation from the central massive protostar. We observed a significant decrease in flux at the location of NIRS3, withK= 13.48 mag being the absolute minimum in the historic series.

Conclusions.Our observations strongly suggest a scenario where the episodic accretion is followed by an episodic ejection response in the near infrared, as was seen in the earlier radio follow-up. The ~2 µm photometry from the past 30 yr suggests that NIRS3 might have undergone another outburst in the late 1980s, making it the first massive protostar with such evidence observed in the near infrared.

 
more » « less
Award ID(s):
2206450
PAR ID:
10559043
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
A&A
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
676
ISSN:
0004-6361
Page Range / eLocation ID:
A107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present Very Large Array 1.3 cm continuum and 22.2 GHz H2O maser observations of the high-mass protostellar object IRAS 19035+0641 A. Our observations unveil an elongated bipolar 1.3 cm continuum structure at scales ≲500 au, which, together with a rising in-band spectral index, strongly suggests that the radio emission toward IRAS 19035+0641 A arises from an ionized jet. In addition, eight individual water maser spots well aligned with the jet axis were identified. The StokesVspectrum of the brightest H2O maser line (∼100 Jy) shows a possible Zeeman splitting and is well represented by the derivatives of two Gaussian components fitted to the StokesIprofile. The measuredBlosare 123 (±27) and 156 (±8) mG, translating to a preshock magnetic field of ≈7 mG. Subsequent observations to confirm the Zeeman splitting showed intense variability in all the water maser spots, with the brightest maser completely disappearing. The observed variability in a 1 yr timescale could be the result of an accretion event. These findings strengthen our interpretation of IRAS 19035+0641 A as a high-mass protostar in an early accretion/outflow evolutionary phase.

     
    more » « less
  2. Context. Protostellar outflows exhibit large variations in their structure depending on the observed gas emission. To understand the origin of the observed variations, it is important to analyze the differences in the observed morphology and kinematics of the different tracers. TheJames WebbSpace Telescope (JWST) allows us to study the physical structure of the protostellar outflow through well-known near-infrared shock tracers in a manner unrivaled by other existing ground-based and space-based telescopes at these wavelengths.

    Aims. This study analyzes the atomic jet and molecular outflow in the Class I protostar, TMC1A, utilizing spatially resolved [Fe II] and H2lines to characterize the morphology and to identify previously undetected spatial features, and compare them to existing observations of TMC1A and its outflows observed at other wavelengths.

    Methods. We identified a large number of [Fe II] and H2lines within the G140H, G235H, and G395H gratings of the NIRSpec IFU observations. We analyzed their morphology and position-velocity (PV) diagrams. From the observed [Fe II] line ratios, the extinction toward the jet is estimated.

    Results. We detected the bipolar Fe jet by revealing, for the first time, the presence of a redshifted atomic jet. Similarly, the red-shifted component of the H2slower wide-angle outflow was observed. The [Fe II] and H2redhifted emission both exhibit significantly lower flux densities compared to their blueshifted counterparts. Additionally, we report the detection of a collimated high-velocity (~100 km s−1), blueshifted H2outflow, suggesting the presence of a molecular jet in addition to the well-known wider angle low-velocity structure. The [Fe II] and H2jets show multiple intensity peaks along the jet axis, which may be associated with ongoing or recent outburst events. In addition to the variation in their intensities, the H2wide-angle outflow exhibits a ring-like structure. The blueshifted H2outflow also shows a left-right brightness asymmetry likely due to interactions with the surrounding ambient medium and molecular outflows. Using the [Fe II] line ratios, the extinction along the atomic jet is estimated to be betweenAV= 10–30 on the blueshifted side, with a trend of decreasing extinction with distance from the protostar. A similarAVis found for the redshifted side, supporting the argument for an intrinsic red-blue outflow lobe asymmetry rather than environmental effects such as extinction. This intrinsic difference revealed by the unprecedented sensitivity of JWST, suggests that younger outflows already exhibit the red-blue side asymmetry more commonly observed toward jets associated with Class II disks.

     
    more » « less
  3. Abstract

    We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30αemission, this structure mainly traces ionized gas. However, there is evidence for ∼30Mof dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80M. A strong velocity gradient in the H30αemission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass ofm*∼ 40Mforming from a core with initial massMc∼ 300Min a clump with mass surface density of Σcl∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1Mfound from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster.

     
    more » « less
  4. Abstract

    Massive protostars launch accretion-powered, magnetically collimated outflows, which play crucial roles in the dynamics and diagnostics of the star formation process. Here we calculate the shock heating and resulting free–free radio emission in numerical models of outflows of massive star formation within the framework of the Turbulent Core Accretion model. We postprocess 3D magnetohydrodynamic simulation snapshots of a protostellar disk wind interacting with an infalling core envelope, and calculate shock temperatures, ionization fractions, and radio free–free emission. We find heating up to ∼107K and near-complete ionization in shocks at the interface between the outflow cavity and infalling envelope. However, line-of-sight averaged ionization fractions peak around ∼10%, in agreement with values reported from observations of massive protostar G35.20-0.74N. By calculating radio-continuum fluxes and spectra, we compare our models with observed samples of massive protostars. We find our fiducial models produce radio luminosities similar to those seen from low- and intermediate-mass protostars that are thought to be powered by shock ionization. Comparing to more massive protostars, we find our model radio luminosities are ∼10–100 times less luminous. We discuss how this apparent discrepancy either reflects aspects of our modeling related to the treatment of cooling of the post-shock gas or a dominant contribution in the observed systems from photoionization. Finally, our models exhibit 10 yr radio flux variability of ∼5%, especially in the inner 1000 au region, comparable to observed levels in some hypercompact Hiiregions.

     
    more » « less
  5. Context. The relationship between outflow launching and the formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Millimetre/sub-millimetre Array (ALMA) carried out long-baseline observations towards a handful of young sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematical and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We used ALMA in its longest-baseline configuration to observe emission from CO isotopologues, SiO, SO 2 , and CH 3 OH. The proximity of B335 provides a resolution of ~3 au (0.03′′). We also combined our long-baseline data with archival observations to produce a high-fidelity image covering scales up to 700 au (7′′). Results. 12 CO has an X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au from the protostar, while short-baseline continuum emission follows the 12 CO outflow and cavity walls. Methanol is detected within ~30 au of the protostar. SiO is also detected in the vicinity of the protostar, but extended along the outflow. Conclusions. The 12 CO outflow does not show any clear signs of rotation at distances ≳30 au from the protostar. SiO traces the protostellar jet on small scales, but without obvious rotation. CH 3 OH and SO 2 trace a region <16 au in diameter, centred on the continuum peak, which is clearly rotating. Using episodic, high-velocity, 12 CO features, we estimate the launching radius of the outflow to be <0.1 au and dynamical timescales of the order of a few years. 
    more » « less