skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 3, 2025

Title: Nonvolatile electrochemical memory at 600°C enabled by composition phase separation
Silicon-based microelectronics are limited to ∼150°C and therefore not suitable for the extremely high temperatures in aerospace, energy, and space applications. While wide-band-gap semiconductors can provide high-temperature logic, nonvolatile memory devices at high temperatures have been challenging. In this work, we develop a nonvolatile electrochemical memory cell that stores and retains analog and digital information at temperatures as high as 600°C. Through correlative scanning transmission electron microscopy, we show that this high-temperature information retention is a result of composition phase separation between the oxidized and reduced forms of amorphous tantalum oxide. This result demonstrates a memory concept that is resilient at extreme temperatures and reveals phase separation as the principal mechanism that enables nonvolatile information storage in these electrochemical memory cells.  more » « less
Award ID(s):
2106225 2235316
PAR ID:
10559224
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Device
Volume:
3
ISSN:
2666-9986
Page Range / eLocation ID:
100623
Subject(s) / Keyword(s):
high-temperature electronics extreme environments nonvolatile memory electrochemical memory resistive memory tantalum oxide phase separation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of computing with memory is essential for distributed, massively parallel, and adaptive architectures such as neural networks in artificial intelligence (AI). Accelerating AI can be achieved through photonic computing, but it requires nonvolatile photonic memory capable of rapid updates during on-chip training sessions or when new information becomes available during deployment. Phase-change materials (PCMs) are promising for providing compact, nonvolatile optical weighting; however, they face limitations in terms of bit precision, programming speed, and cycling endurance. Here, we propose a novel photonic memory cell that merges nonvolatile photonic weighting using PCMs with high-speed, volatile tuning enabled by an integrated PN junction. Our experiments demonstrate that the same PN modulator, fabricated via a foundry-compatible process, can achieve dual functionality. It supports coarse programmability for setting initial optical weights and facilitates high-speed fine-tuning to adjust these weights dynamically. The result shows a 400-fold increase in volatile tuning speed and a 10,000-fold enhancement in efficiency. This multifunctional photonic memory with volatile and nonvolatile capabilities could significantly advance the performance and versatility of photonic memory cells, providing robust solutions for dynamic computing environments. 
    more » « less
  2. The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficient D , play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η to D , the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperature T m and is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures above T m in the high–atomic mobility state of a PCM, Ge 1 Sb 2 Te 4 . This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden below T m . 
    more » « less
  3. null (Ed.)
    Abstract Multi-functional thin films of boron (B) doped Cr 2 O 3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H . Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr 2 O 3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent T N and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H  = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr 2 O 3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications. 
    more » « less
  4. Abstract Electrochemical random‐access memory (ECRAM) is a recently developed and highly promising analog resistive memory element for in‐memory computing. One longstanding challenge of ECRAM is attaining retention time beyond a few hours. This short retention has precluded ECRAM from being considered for inference classification in deep neural networks, which is likely the largest opportunity for in‐memory computing. In this work, an ECRAM cell with orders of magnitude longer retention than previously achieved is developed, and which is anticipated to exceed ten years at 85 °C. This study hypothesizes that the origin of this exceptional retention is phase separation, which enables the formation of multiple effectively equilibrium resistance states. This work highlights the promises and opportunities to use phase separation to yield ECRAM cells with exceptionally long, and potentially permanent, retention times. 
    more » « less
  5. Abstract Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds. The cooling rate determines the final state. Reversible polymorphic layered materials provide an alternative atomic transition mechanism for low-energy electronic (small domain size) and photonic nonvolatile memories (which require a large effective tuning area). The small energy barrier of breaking van der Waals force facilitates low energy, fast-reset, and melting-free phase transitions, which reduces the chance of element segregation-associated device failure. The search for such material families starts with polymorphic In2Se3, which has two layered structures that are topologically similar and stable at room temperature. In this perspective, we first review the history of different memory schemes, compare the thermal dynamics of phase transitions in amorphous-crystalline and In2Se3, detail the device implementations for all-optical memory, and discuss the challenges and opportunities associated with polymorphic memory. 
    more » « less