Abstract Boron (B) alloying transforms the magnetoelectric antiferromagnet Cr2O3into a multifunctional single‐phase material which enables electric field driven π/2 rotation of the Néel vector. Nonvolatile, voltage‐controlled Néel vector rotation is a much‐desired material property in the context of antiferromagnetic spintronics enabling ultralow power, ultrafast, nonvolatile memory, and logic device applications. Néel vector rotation is detected with the help of heavy metal (Pt) Hall‐bars in proximity of pulsed laser deposited B:Cr2O3films. To facilitate operation of B:Cr2O3‐based devices in CMOS (complementary metal‐oxide semiconductor) environments, the Néel temperature,TN, of the functional film must be tunable to values significantly above room temperature. Cold neutron depth profiling and X‐ray photoemission spectroscopy depth profiling reveal thermally activated B‐accumulation at the B:Cr2O3/ vacuum interface in thin films deposited on Al2O3substrates. The B‐enrichment is attributed to surface segregation. Magnetotransport data confirm B‐accumulation at the interface within a layer of ≈50 nm thick where the device properties reside. HereTNenhances from 334 K prior to annealing, to 477 K after annealing for several hours. Scaling analysis determinesTNas a function of the annealing temperature. Stability of post‐annealing device properties is evident from reproducible Néel vector rotation at 370 K performed over the course of weeks. 
                        more » 
                        « less   
                    
                            
                            Voltage controlled Néel vector rotation in zero magnetic field
                        
                    
    
            Abstract Multi-functional thin films of boron (B) doped Cr 2 O 3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H . Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr 2 O 3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent T N and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H  = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr 2 O 3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1740136
- PAR ID:
- 10302188
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Chromia (Cr2O3) is a magnetoelectric oxide that permits voltage‐control of the antiferromagnetic (AFM) order, but it suffers technological constraints due to its low Néel Temperature (TN≈307 K) and the need of a symmetry‐breaking applied magnetic field to achieve reversal of the Néel vector. Recently, boron (B) doping of Cr2O3films led to an increaseTN>400 K and allowed the realization of voltage magnetic‐field free controlled Néel vector rotation. Here, the impact of B doping is directly imaged on the formation of AFM domains in Cr2O3thin films and elucidates the mechanism of voltage‐controlled manipulation of the spin structure using nitrogen‐vacancy (NV) scanning probe magnetometry. A stark reduction and thickness dependence of domain size in B‐doped Cr2O3(B:Cr2O3) films is found, explained by the increased germ density, likely associated with the B doping. By reconstructing the surface magnetization from the NV stray‐field maps, a qualitative distinction between the undoped and B‐doped Cr2O3films is found, manifested by the histogram distribution of the AFM ordering, that is, 180°domains for pure films, and 90°domains for B:Cr2O3films. Additionally, NV imaging of voltage‐controlled B‐doped Cr2O3devices corroborates the 90°rotation of the AFM domains observed in magnetotransport measurement.more » « less
- 
            Abstract Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2ʹ-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV–Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit.more » « less
- 
            We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr 2 O 3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e. , cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in Cr 2 O 3 films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the Cr 2 O 3 film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling.more » « less
- 
            Abstract Iron rhodium (FeRh) undergoes a first‐order anti‐ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)‐oriented FeRh films on Al2O3substrates, the ANE thermopower over a temperature range of 100–350 K is observed, with similar magnetic transport behaviors observed for in‐plane magnetization (IM) and out‐of‐plane magnetization (PM) configurations. The temperature‐dependent magnetization–magnetic field strength (M–H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M‐H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed‐magnetic‐phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3substrate. Finite element method simulations associated with the Heisenberg spin model and Landau–Lifshitz–Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    