skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HOVER: Homophilic Oversampling via Edge Removal for Class-Imbalanced Bot Detection on Graphs
As malicious bots reside in a network to disrupt network stability, graph neural networks (GNNs) have emerged as one of the most popular bot detection methods. However, in most cases these graphs are significantly class-imbalanced. To address this issue, graph oversampling has recently been proposed to synthesize nodes and edges, which still suffers from graph heterophily, leading to suboptimal performance. In this paper, we propose HOVER, which implements Homophilic Oversampling Via Edge Removal for bot detection on graphs. Instead of oversampling nodes and edges within initial graph structure, HOVER designs a simple edge removal method with heuristic criteria to mitigate heterophily and learn distinguishable node embeddings, which are then used to oversample minority bots to generate a balanced class distribution without edge synthesis. Experiments on TON IoT networks demonstrate the state-of-the-art performance of HOVER on bot detection with high graph heterophily and extreme class imbalance.  more » « less
Award ID(s):
2245968
PAR ID:
10476180
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM International Conference on Information and Knowledge Management
ISBN:
9798400701245
Page Range / eLocation ID:
3728-3732
Subject(s) / Keyword(s):
Bot detection Graph convolutional networks Imbalanced classes Homophily and heterophily
Format(s):
Medium: X
Location:
Birmingham United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. As the developers of malware continuously evolve their attacks and infection methods, so to must bot detection methods advance. Graph Neural Networks (GNNs) have emerged as a promising detection method. However, in most cases communications graphs reflecting bot-infected networks are plagued with class imbalance and a high level of heterophily. Graph oversampling techniques employed to tackle class imbalance on graphs have drawbacks, such as introducing noisy topological structures or exacerbating heterophily within the graph. Out-of-distribution detection (ODD) is considered as an alternative solution to address data imbalance issues, but when applied to graphs, it assumes that the underlying graph structure does not interfere with the learning of data distributions. In this paper, we present the first application of ODD methods for bot detection in a network. We propose a new energy-based ODD model, which surpasses existing ODD methods, including those tailored for ODD on graph data, and effectively mitigates performance degradation caused by graph heterophily. We substantiate our claims through extensive experiments on the TON IoT dataset, which comprises real captured bot data. The experimental results demonstrate that our model achieves state-of-the-art performance in bot detection on graphs with high graph heterophily and extreme class imbalance. 
    more » « less
  2. As fraudulent activities have shot up manifolds, fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, online reviews, and social networks). Since interactions among entities provide valuable insights into fraudulent activities, such behaviors can be naturally represented as graph structures, where graph neural networks (GNNs) have been developed as prominent models to boost the efficacy of fraud detection. In graph-based fraud detection, handling imbalanced datasets poses a significant challenge, as the minority class often gets overshadowed, diminishing the performance of conventional GNNs. While oversampling has recently been adapted for imbalanced graphs, it contends with issues such as graph heterophily and noisy edge synthesis. To address these limitations, this paper introduces DOS-GNN, incorporating Dual-feature aggregation with Over-Sampling to advance GNNs for class-imbalanced fraud detection on graphs. This model exploits feature separation and dual-feature aggregation to mitigate the impact of heterophily and acquire refined node embeddings that facilitate fraud oversampling to balance class distribution without the need for edge synthesis. Extensive experiments on four large and real-world fraud datasets demonstrate that DOS-GNN can significantly improve fraud detection performance on graphs with different imbalance ratios and homophily ratios, outperforming state-of-the-art GNN models. 
    more » « less
  3. Fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, social networks). Since interactions among entities provide valuable insights into fraudulent activities, such behaviors can be naturally represented as graphs, where graph neural networks (GNNs) have been developed as prominent models to boost the efficacy of fraud detection. However, the application of GNNs in this domain encounters significant challenges, primarily due to class imbalance and a mixture of homophily and heterophily of fraud graphs. To address these challenges, in this paper, we propose LACA, which implements fraud detection on graphs using Label-Aware feature aggregation to advance GNN training, which is regularized by Clustering Augmented optimization. Specifically, label-aware feature aggregation simplifies adaptive aggregation in homophily-heterophily mixed neighborhoods, preventing gradient domination by legitimate nodes and mitigating class imbalance in message passing. Clustering-augmented optimization provides fine-grained subclass semantics to improve detection performance, and yields additional benefit in addressing class imbalance. Extensive experiments on four fraud datasets demonstrate that LACA can significantly improve fraud detection performance on graphs with different imbalance ratios and homophily ratios, outperforming state-of-the-art GNN models. 
    more » « less
  4. Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method{---}BotPercent{---}is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. 
    more » « less
  5. null (Ed.)
    Deep learning methods for graphs achieve remarkable performance across a variety of domains. However, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). Here, we develop GNNGuard, a general algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure. GNNGuard can be straight-forwardly incorporated into any GNN. Its core principle is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack.GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. The revised edges allow for robust propagation of neural messages in the underlying GNN. GNNGuard introduces two novel components, the neighbor importance estimation, and the layer-wise graph memory, and we show empirically that both components are necessary for a successful defense. Across five GNNs, three defense methods, and five datasets,including a challenging human disease graph, experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average. Remarkably, GNNGuard can effectively restore state-of-the-art performance of GNNs in the face of various adversarial attacks, including targeted and non-targeted attacks, and can defend against attacks on heterophily graphs. 
    more » « less