The advanced capabilities of Large Language Models (LLMs) have made them invaluable across various applications, from conversational agents and content creation to data analysis, research, and innovation. However, their effectiveness and accessibility also render them susceptible to abuse for generating malicious content, including phishing attacks. This study explores the potential of using four popular commercially available LLMs, i.e., ChatGPT (GPT 3.5 Turbo), GPT 4, Claude, and Bard, to generate functional phishing attacks using a series of malicious prompts. We discover that these LLMs can generate both phishing websites and emails that can convincingly imitate well-known brands and also deploy a range of evasive tactics that are used to elude detection mechanisms employed by anti-phishing systems. These attacks can be generated using unmodified or "vanilla" versions of these LLMs without requiring any prior adversarial exploits such as jailbreaking. We evaluate the performance of the LLMs towards generating these attacks and find that they can also be utilized to create malicious prompts that, in turn, can be fed back to the model to generate phishing scams - thus massively reducing the prompt-engineering effort required by attackers to scale these threats. As a countermeasure, we build a BERT-based automated detection tool that can be used for the early detection of malicious prompts to prevent LLMs from generating phishing content. Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts. We also disclose the vulnerabilities to the concerned LLMs, with Google acknowledging it as a severe issue. Our detection model is available for use at Hugging Face, as well as a ChatGPT Actions plugin. 
                        more » 
                        « less   
                    This content will become publicly available on December 2, 2025
                            
                            DRILL: Dual-Reasoning Large Language Models for Phishing Email Detection with Limited Data
                        
                    
    
            As phishing emails pose a growing threat to individuals and organizations alike, there is an urgent need to develop more accurate detection methods. Large Language Models (LLMs) have recently garnered major attention in this line of research; however, they often require large-scale data for fine-tuning, which is impractical in real-world application scenarios. This paper proposes DRILL, a new simple and efficient mechanism, for dual-reasoning LLMs to detect phishing emails with extremely small data. DRILL distills the reasoning ability from an LLM into a target small LM model, while integrating trainable perturbations to manipulate the inputs, which in turn adaptively enhances the inference ability of the target LM. Extensive experiments are conducted on multiple real-world email datasets, and the evaluation results demonstrate that DRILL can benefit from dual LMs, which significantly reduces training parameters and data required, while maintaining state-of-the-art performance in phishing email detection with limited data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2245968
- PAR ID:
- 10559232
- Publisher / Repository:
- International Conference on Neural Information Processing
- Date Published:
- Subject(s) / Keyword(s):
- Phishing Email Detection Large Language Models Reasoning Data-Limited Learning
- Format(s):
- Medium: X
- Location:
- Auckland, New Zealand
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Phishing emails have certain characteristics, including wording related to urgency and unrealistic promises (i.e., “too good to be true”), that attempt to lure victims. To test whether these characteristics affected users’ suspiciousness of emails, users participated in a phishing judgment task in which we manipulated 1) email type (legitimate, phishing), 2) consequence amount (small, medium, large), 3) consequence type (gain, loss), and 4) urgency (present, absent). We predicted users would be most suspicious of phishing emails that were urgent and offered large gains. Results supporting the hypotheses indicate that users were more suspicious of phishing emails with a gain consequence type or large consequence amount. However, urgency was not a significant predictor of suspiciousness for phishing emails, but was for legitimate emails. These results have important cybersecurity-related implications for penetration testing and user training.more » « less
- 
            Phishing scam emails are emails that pretend to be something they are not in order to get the recipient of the email to undertake some action they normally would not. While technical protections against phishing reduce the number of phishing emails received, they are not perfect and phishing remains one of the largest sources of security risk in technology and communication systems. To better understand the cognitive process that end users can use to identify phishing messages, I interviewed 21 IT experts about instances where they successfully identified emails as phishing in their own inboxes. IT experts naturally follow a three-stage process for identifying phishing emails. In the first stage, the email recipient tries to make sense of the email, and understand how it relates to other things in their life. As they do this, they notice discrepancies: little things that are off'' about the email. As the recipient notices more discrepancies, they feel a need for an alternative explanation for the email. At some point, some feature of the email --- usually, the presence of a link requesting an action --- triggers them to recognize that phishing is a possible alternative explanation. At this point, they become suspicious (stage two) and investigate the email by looking for technical details that can conclusively identify the email as phishing. Once they find such information, then they move to stage three and deal with the email by deleting it or reporting it. I discuss ways this process can fail, and implications for improving training of end users about phishing.more » « less
- 
            We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefitting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employeesent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the `enterprise attacker' and shed light on the current state of enterprise phishing attacksmore » « less
- 
            null (Ed.)Phishing is a serious challenge that remains largely unsolved despite the efforts of many researchers. In this paper, we present datasets and tools to help phishing researchers. First, we describe our efforts on creating high quality, diverse and representative email and URL/website datasets for phishing and making them publicly available. Second, we describe PhishBench, a benchmarking framework, which automates the extraction of more than 200 features, implements more than 30 classifiers, and 12 evaluation metrics, for detection of phishing emails, websites and URLs. Using PhishBench, the research community can easily run their models and benchmark their work against the work of others, who have used common dataset sources for emails (Nazario, SpamAssassin, WikiLeaks, etc.) and URLs (PhishTank, APWG, Alexa, etc.).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
