skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Mixed-Methods Investigation of How Digital Immersion Affects Design for Additive Manufacturing Evaluations
Abstract Applications for additive manufacturing (AM) continue to increase as more industries adopt the technology within their product development processes. There is a growing demand for designers to acquire and hone their design for AM (DfAM) intuition and generate innovative solutions with AM. Resources that promote DfAM intuition, however, historically default to physical or digitally non-immersive modalities. Immersive virtual reality (VR) naturally supports 3D spatial perception and reasoning, suggesting its intuitive role in evaluating geometrically complex designs and fostering DfAM intuition. However, the effects of immersion on DfAM evaluations are not well-established in the literature. This study contributes to this gap in the literature by examining DfAM evaluations for a variety of designs across modalities using varying degrees of immersion. Specifically, it observes the effects on the outcomes of the DfAM evaluation, the effort required of evaluators, and their engagement with the designs. Findings indicate that the outcomes from DfAM evaluations in immersive and non-immersive modalities are similar without statistically observable differences in the cognitive load experienced during the evaluations. Active engagement with the designs, however, is observed to be significantly different between immersive and non-immersive modalities. By contrast, passive engagement remains similar across the modalities. These findings have interesting implications on how organizations train designers in DfAM, as well as on the role of immersive modalities in design processes. Organizations can provide DfAM resources across different levels of immersion, enabling designers to customize how they acquire DfAM intuition and solve complex engineering problems.  more » « less
Award ID(s):
2021267
PAR ID:
10559295
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
146
Issue:
11
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The demand for additive manufacturing (AM) continues to grow as more industries look to integrate the technology into their product development. However, there is a deficit of designers skilled to innovate with this technology due to challenges in supporting designers with tools and education for their development in design for AM (DfAM). There is a need to introduce intuitive tools and knowledge to enable future designers to DfAM. Immersive virtual reality (VR) shows promise to serve as an intuitive tool for DfAM to aid designers during design evaluation. The goal of this research is to, therefore, identify the effects of immersion in design evaluation and study how evaluating designs for DfAM between mediums that vary in immersion, affects the results of the DfAM evaluation and the mental effort experienced from evaluating the designs. Our findings suggest that designers can use immersive and non-immersive mediums for DfAM evaluation without experiencing significant differences in the outcomes of the evaluation and the cognitive load experienced from conducting the evaluation. The findings from this work thus have implications for how industries can customize product and designer-talent development using modular design evaluation systems that leverage capabilities in immersive and non-immersive DfAM evaluation. 
    more » « less
  2. Abstract Solving problems with additive manufacturing (AM) often means fabricating geometrically complex designs, layer-by-layer, along one or multiple directions. Designers navigate this 3D spatial complexity to determine the best design and manufacturing solutions to produce functional parts, manufacturable by AM. However, to assess the manufacturability of their solutions, designers need modalities that naturally visualize AM processes and the designs enabled by them. Creating physical parts offers such visualization but becomes expensive and time-consuming over multiple design iterations. While non-immersive simulations can alleviate this cost of physical visualization, adding digital immersion further improves outcomes from the visualization experience. This research, therefore, studies how differences in immersion between computer-aided (CAx) and virtual reality (VR) environments affect: 1. determining the best solution for additively manufacturing a design and 2. the cognitive load experienced from completing the DfAM problem-solving experience. For the study, designers created a 3D manifold model and simulated manufacturing it in either CAx or VR. Analysis of the filtered data from the study shows that slicing and printing their designs in VR yields a significant change in the manufacturability outcomes of their design compared to CAx. No observable differences were found in the cognitive load experienced between the two modalities. This means that the experiences in VR may influence improvements to manufacturability outcomes without changes to the mental exertion experienced by the designers. This presents key implications for how designers are equipped to solve design problems with AM. 
    more » « less
  3. Abstract Additive manufacturing (AM) enables engineers to improve the functionality and performance of their designs by adding complexity at little to no additional cost. However, AM processes also exhibit certain unique limitations, such as the presence of support material. These limitations must be accounted for to ensure that designs can be manufactured feasibly and cost-effectively. Given these unique process characteristics, it is important for an AM-trained workforce to be able to incorporate both opportunistic and restrictive design for AM (DfAM) considerations into the design process. While AM/DfAM educational interventions have been discussed in the literature, few studies have objectively assessed the integration of DfAM in student engineering designers’ design outcomes. Furthermore, limited research has explored how the use of DfAM affects the students’ AM designs’ achievement of design task objectives. This research explores this gap in literature through an experimental study with 301 undergraduate students. Specifically, participants were exposed to either restrictive DfAM or dual DfAM (both opportunistic and restrictive) and then asked to participate in a design challenge. The participants’ final designs were evaluated for (1) build time and build material (2) the use of the various DfAM concepts, and (3) the features used to manifest these DfAM concepts. The results show that the use of certain DfAM considerations, such as part complexity, number of parts, support material mass, and build plate contact area (corresponding to warping tendency), correlated with the build material and build time of the AM designs—minimizing both of which were objectives of the design task. The results also show that introducing participants to opportunistic DfAM leads to the generation of designs with higher part complexity and lower build plate contact area but a greater presence of inaccessible support material. 
    more » « less
  4. Additive manufacturing (AM) processes present designers with creative freedoms beyond the capabilities of traditional manufacturing processes. However, to successfully leverage AM, designers must balance their creativity against the limitations inherent in these processes to ensure the feasibility of their designs. This feasible adoption of AM can be achieved if designers learn about and apply opportunistic and restrictive design for AM (DfAM) techniques at appropriate stages of the design process. Researchers have demonstrated the effect of the order of presentation of information on the learning and retrieval of said information; however, there is a need to explore this effect within DfAM education. In this paper, we explore this gap through an experimental study involving 195 undergraduate engineering students. Specifically, we compare two variations in DfAM education: (1) opportunistic DfAM followed by restrictive DfAM, and (2) restrictive DfAM followed by opportunistic DfAM, against only opportunistic DFAM and only restrictive DfAM training. These variations are compared through (1) differences in participants’ DfAM self-efficacy, (2) their self-reported DfAM use, and (3) the creativity of their design outcomes. From the results, we see that only students trained in opportunistic DfAM, with or without restrictive DfAM, present a significant increase in their opportunistic DfAM self-efficacy. However, all students trained in DfAM – opportunistic, restrictive, or both – demonstrated an increase in their restrictive DfAM self-efficacy. Further, we see that teaching restrictive DfAM first followed by opportunistic DfAM results in the generation of ideas with greater creativity – a novel research finding. These results highlight the need for educators to accountfor the effects of the order of presenting content to students, especially when educating students about DfAM. 
    more » « less
  5. null (Ed.)
    Abstract Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see that experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs. 
    more » « less