Abstract Applications for additive manufacturing (AM) continue to increase as more industries adopt the technology within their product development processes. There is a growing demand for designers to acquire and hone their design for AM (DfAM) intuition and generate innovative solutions with AM. Resources that promote DfAM intuition, however, historically default to physical or digitally non-immersive modalities. Immersive virtual reality (VR) naturally supports 3D spatial perception and reasoning, suggesting its intuitive role in evaluating geometrically complex designs and fostering DfAM intuition. However, the effects of immersion on DfAM evaluations are not well-established in the literature. This study contributes to this gap in the literature by examining DfAM evaluations for a variety of designs across modalities using varying degrees of immersion. Specifically, it observes the effects on the outcomes of the DfAM evaluation, the effort required of evaluators, and their engagement with the designs. Findings indicate that the outcomes from DfAM evaluations in immersive and non-immersive modalities are similar without statistically observable differences in the cognitive load experienced during the evaluations. Active engagement with the designs, however, is observed to be significantly different between immersive and non-immersive modalities. By contrast, passive engagement remains similar across the modalities. These findings have interesting implications on how organizations train designers in DfAM, as well as on the role of immersive modalities in design processes. Organizations can provide DfAM resources across different levels of immersion, enabling designers to customize how they acquire DfAM intuition and solve complex engineering problems.
more »
« less
This content will become publicly available on August 25, 2025
Studying Changes to the Additive Manufacturability of Design Solutions When Prepared and Simulated in Immersive Virtual Reality
Abstract Solving problems with additive manufacturing (AM) often means fabricating geometrically complex designs, layer-by-layer, along one or multiple directions. Designers navigate this 3D spatial complexity to determine the best design and manufacturing solutions to produce functional parts, manufacturable by AM. However, to assess the manufacturability of their solutions, designers need modalities that naturally visualize AM processes and the designs enabled by them. Creating physical parts offers such visualization but becomes expensive and time-consuming over multiple design iterations. While non-immersive simulations can alleviate this cost of physical visualization, adding digital immersion further improves outcomes from the visualization experience. This research, therefore, studies how differences in immersion between computer-aided (CAx) and virtual reality (VR) environments affect: 1. determining the best solution for additively manufacturing a design and 2. the cognitive load experienced from completing the DfAM problem-solving experience. For the study, designers created a 3D manifold model and simulated manufacturing it in either CAx or VR. Analysis of the filtered data from the study shows that slicing and printing their designs in VR yields a significant change in the manufacturability outcomes of their design compared to CAx. No observable differences were found in the cognitive load experienced between the two modalities. This means that the experiences in VR may influence improvements to manufacturability outcomes without changes to the mental exertion experienced by the designers. This presents key implications for how designers are equipped to solve design problems with AM.
more »
« less
- Award ID(s):
- 2021267
- PAR ID:
- 10559296
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8836-0
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The demand for additive manufacturing (AM) continues to grow as more industries look to integrate the technology into their product development. However, there is a deficit of designers skilled to innovate with this technology due to challenges in supporting designers with tools and education for their development in design for AM (DfAM). There is a need to introduce intuitive tools and knowledge to enable future designers to DfAM. Immersive virtual reality (VR) shows promise to serve as an intuitive tool for DfAM to aid designers during design evaluation. The goal of this research is to, therefore, identify the effects of immersion in design evaluation and study how evaluating designs for DfAM between mediums that vary in immersion, affects the results of the DfAM evaluation and the mental effort experienced from evaluating the designs. Our findings suggest that designers can use immersive and non-immersive mediums for DfAM evaluation without experiencing significant differences in the outcomes of the evaluation and the cognitive load experienced from conducting the evaluation. The findings from this work thus have implications for how industries can customize product and designer-talent development using modular design evaluation systems that leverage capabilities in immersive and non-immersive DfAM evaluation.more » « less
-
Abstract As additive manufacturing (AM) usage increases, designers who wish to maximize AM’s potential must reconsider the traditional manufacturing (TM) axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience and the presenting of priming content in manufacturing affect these concepts. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience and presenting design for traditional manufacturing (DFTM) and design for additive manufacturing (DFAM) axioms. To understand how designers approach design creation early in the design process and investigate potential influential factors, participants in this study were asked to complete a design challenge centered on concept generation. Before this design challenge, a randomized subset of these participants received priming content on DFTM and DFAM considerations. These participants’ final designs were evaluated for both traditional manufacturability and additive manufacturability and compared against the final designs produced by participants who did not receive the priming content. Results show that students with low manufacturing experience levels create designs that are more naturally suited for TM. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs more naturally suited for AM. This correlates with a higher self-reported use of DFAM axioms in the evaluation of these designs. These results suggest that students with high manufacturing experience levels rely on their previous experience when it comes to creating a design for either manufacturing process. Lastly, while the manufacturing priming content significantly influenced the traditional manufacturability of the designs, the priming content did not increase the number of self-reported design for manufacturing (DFM) axioms in the designs.more » « less
-
Abstract As additive manufacturing (AM) becomes more mainstream in industry, the newer design for additive manufacturing (DfAM) considerations must be distinguished from the older design for traditional manufacturing (DfTM) considerations. Designers who wish to maximize additive manufacturing’s potential must reconsider the traditional manufacturing axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience in manufacturing affects this. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience with additive manufacturing and traditional manufacturing. In this study, participants were given priming content on DfTM and DfAM considerations and then asked to complete a design challenge centered on concept generation. The participants’ final designs were evaluated for manufacturability as suited for traditional and additive manufacturing. Results show that students with low manufacturing experience levels create designs that are more naturally suited for traditional manufacturing. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs suited for additive manufacturing. This correlates with a higher self-reported use of DfAM axioms in the evaluation of these designs. These results suggests that students with high manufacturing experience levels make a subconscious decision for which manufacturing process to design for.more » « less
-
null (Ed.)Abstract Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see that experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs.more » « less