Although photometric redshifts (photo-z’s) are crucial ingredients for current and upcoming large-scale surveys, the high-quality spectroscopic redshifts currently available to train, validate, and test them are substantially non-representative in both magnitude and colour. We investigate the nature and structure of this bias by tracking how objects from a heterogeneous training sample contribute to photo-z predictions as a function of magnitude and colour, and illustrate that the underlying redshift distribution at fixed colour can evolve strongly as a function of magnitude. We then test the robustness of the galaxy–galaxy lensing signal in 120 deg2 of HSC–SSP DR1 data to spectroscopic completeness and photo-z biases, and find that their impacts are sub-dominant to current statistical uncertainties. Our methodology provides a framework to investigate how spectroscopic incompleteness can impact photo-z-based weak lensing predictions in future surveys such as LSST and WFIRST.
This content will become publicly available on June 1, 2025
- Award ID(s):
- 2009210
- PAR ID:
- 10559381
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 686
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Large imaging surveys will rely on photometric redshifts (photo-
z 's), which are typically estimated through machine-learning methods. Currently planned spectroscopic surveys will not be deep enough to produce a representative training sample for Legacy Survey of Space and Time (LSST), so we seek methods to improve the photo-z estimates that arise from nonrepresentative training samples. Spectroscopic training samples for photo-z 's are biased toward redder, brighter galaxies, which also tend to be at lower redshift than the typical galaxy observed by LSST, leading to poor photo-z estimates with outlier fractions nearly 4 times larger than for a representative training sample. In this Letter, we apply the concept of training sample augmentation, where we augment simulated nonrepresentative training samples with simulated galaxies possessing otherwise unrepresented features. When we select simulated galaxies with (g -z ) color,i -band magnitude, and redshift outside the range of the original training sample, we are able to reduce the outlier fraction of the photo-z estimates for simulated LSST data by nearly 50% and the normalized median absolute deviation (NMAD) by 56%. When compared to a fully representative training sample, augmentation can recover nearly 70% of the degradation in the outlier fraction and 80% of the degradation in NMAD. Training sample augmentation is a simple and effective way to improve training samples for photo-z 's without requiring additional spectroscopic samples. -
Abstract The accurate estimation of photometric redshifts is crucial to many upcoming galaxy surveys, for example, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Almost all Rubin extragalactic and cosmological science requires accurate and precise calculation of photometric redshifts; many diverse approaches to this problem are currently in the process of being developed, validated, and tested. In this work, we use the photometric redshift code GPz to examine two realistically complex training set imperfections scenarios for machine learning based photometric redshift calculation: (i) where the spectroscopic training set has a very different distribution in color–magnitude space to the test set, and (ii) where the effect of emission line confusion causes a fraction of the training spectroscopic sample to not have the true redshift. By evaluating the sensitivity of GPz to a range of increasingly severe imperfections, with a range of metrics (both of photo- z point estimates as well as posterior probability distribution functions, PDFs), we quantify the degree to which predictions get worse with higher degrees of degradation. In particular, we find that there is a substantial drop-off in photo- z quality when line-confusion goes above ∼1%, and sample incompleteness below a redshift of 1.5, for an experimental setup using data from the Buzzard Flock synthetic sky catalogs.more » « less
-
ABSTRACT We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first 3 yr of data (Y3). The new calibration is based on a combination of a self-organizing-map-based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild differences (<3σ) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy–galaxy lensing measurements, assuming a Lambda cold dark matter cosmology. We obtain Ωm = 0.30 ± 0.04, σ8 = 0.81 ± 0.07, and S8 = 0.81 ± 0.04, which implies a ∼0.4σ shift in the Ω − S8 plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multiprobe cosmological analyses.
-
Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-
t distributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z ) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHK and WISE W1W2) are available. The classification and photo-z regression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-z quality, defined as the fraction of objects with the difference between the photo-z z p and the spectroscopic redshiftz s , ∣Δz ∣ ≡ ∣z s −z p ∣/(1 +z s ) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr < 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r ≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog.