skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SN 1054 as a pulsar-driven supernova: implications for the crab pulsar and remnant evolution
ABSTRACT One of the most studied objects in astronomy, the Crab Nebula, is the remnant of the historical supernova SN 1054. Historical observations of the supernova imply a typical supernova luminosity, but contemporary observations of the remnant imply a low explosion energy and low ejecta kinetic energy. These observations are incompatible with a standard $$^{56}$$Ni-powered supernova, hinting at an an alternate power source such as circumstellar interaction or a central engine. We examine SN 1054 using a pulsar-driven supernova model, similar to those used for superluminous supernovae. The model can reproduce the luminosity and velocity of SN 1054 for an initial spin period of $$\sim$$14 ms and an initial dipole magnetic field of 10$$^{14-15}$$ G. We discuss the implications of these results, including the evolution of the Crab pulsar, the evolution of the remnant structure, formation of filaments, and limits on freely expanding ejecta. We discuss how our model could be tested further through potential light echo photometry and spectroscopy, as well as the modern analogues of SN 1054.  more » « less
Award ID(s):
2205314
PAR ID:
10559472
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
536
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 408-421
Size(s):
p. 408-421
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present JWST observations of the Crab Nebula, the iconic remnant of the historical SN 1054. The observations include NIRCam and MIRI imaging mosaics plus MIRI/MRS spectra that probe two select locations within the ejecta filaments. We derive a high-resolution map of dust emission and show that the grains are concentrated in the innermost, high-density filaments. These dense filaments coincide with multiple synchrotron bays around the periphery of the Crab's pulsar wind nebula (PWN). We measure synchrotron spectral index changes in small-scale features within the PWN’s torus region, including the well-known knot and wisp structures. The index variations are consistent with Doppler boosting of emission from particles with a broken power-law distribution, providing the first direct evidence that the curvature in the particle injection spectrum is tied to the acceleration mechanism at the termination shock. We detect multiple nickel and iron lines in the ejecta filaments and use photoionization models to derive nickel-to-iron abundance ratios that are a factor of 3–8 higher than the solar ratio. We also find that the previously reported order-of-magnitude higher Ni/Fe values from optical data are consistent with the lower values from JWST when we reanalyze the optical emission using updated atomic data and account for local extinction from dust. We discuss the implications of our results for understanding the nature of the explosion that produced the Crab Nebula and conclude that the observational properties are most consistent with a low-mass Fe core-collapse supernova, even though an electron-capture explosion cannot be ruled out. 
    more » « less
  2. ABSTRACT We present a hyperspectral cube of the Crab Nebula obtained with the imaging Fourier transform spectrometer SITELLE on the Canada–France–Hawaii telescope. We describe our techniques used to deconvolve the 310 000 individual spectra ($$R = 9\, 600$$) containing Hα, [N ii] λλ6548, 6583, and [S ii] λλ6716, 6731 emission lines and create a detailed 3D reconstruction of the supernova (SN) remnant (SNR) assuming uniform global expansion. We find that the general boundaries of the 3D volume occupied by the Crab are not strictly ellipsoidal as commonly assumed, and instead appear to follow a ‘heart-shaped’ distribution that is symmetrical about the plane of the pulsar wind torus. Conspicuous restrictions in the bulk distribution of gas consistent with constrained expansion coincide with positions of the dark bays and east–west band of He-rich filaments, which may be associated with interaction with a pre-existing circumstellar disc. The distribution of filaments follows an intricate honeycomb-like arrangement with straight and rounded boundaries at large and small scales that are anticorrelated with distance from the centre of expansion. The distribution is not unlike the large-scale rings observed in SNRs 3C 58 and Cassiopeia A, where it has been attributed to turbulent mixing processes that encouraged outwardly expanding plumes of radioactive 56Ni-rich ejecta. These characteristics reflect critical details of the original SN of 1054 CE and its progenitor star, and may favour a low-energy explosion of an iron-core progenitor. We demonstrate that our main findings are robust despite regions of non-homologous expansion driven by acceleration of material by the pulsar wind nebula. 
    more » « less
  3. Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae. 
    more » « less
  4. Context. Recent observations with the James Webb Space Telescope (JWST) have revealed unprecedented details of an intricate filamentary structure of unshocked ejecta within the young supernova remnant (SNR) Cassiopeia A (Cas A), offering new insights into the mechanisms governing supernova (SN) explosions and the subsequent evolution of ejecta. Aims. We aim to investigate the origin and evolution of the newly discovered web-like network of ejecta filaments in Cas A. Our specific objectives are: (i) to characterize the three-dimensional (3D) structure and kinematics of the filamentary network and (ii) to identify the physical mechanisms responsible for its formation. Methods. We performed high-resolution, 3D hydrodynamic (HD) and magneto-hydrodynamic (MHD) simulations to model the evolution of a neutrino-driven SN from the explosion to its remnant with the age of 1000 years. The initial conditions, set shortly after the shock breakout at the stellar surface, are based on a 3D neutrino-driven SN model that closely matches the basic properties of Cas A. Results. We found that the magnetic field has little impact on the evolution of unshocked ejecta, so we focused most of the analysis on the HD simulations. A web-like network of ejecta filaments, with structures compatible with those observed by JWST (down to scales ≈0.01 pc), naturally forms during the SN explosion. The filaments result from the combined effects of processes occurring soon after the core collapse, including the expansion of neutrino-heated bubbles formed within the first second after the explosion, hydrodynamic instabilities triggered during the blast propagation through the stellar interior, and the Ni-bubble effect following the shock breakout. The interaction of the reverse shock with the ejecta progressively disrupts the filaments through the growth of hydrodynamic instabilities. By around 700 years, the filamentary network becomes unobservable. Conclusions. According to our models, the filaments observed by JWST in Cas A most likely preserve a “memory” of the early explosion conditions, reflecting the processes active during and immediately after the SN event. Notably, a filamentary network closely resembling that observed in Cas A is naturally produced by a neutrino-driven SN explosion. 
    more » « less
  5. Context.The supernova remnant (SNR) Cassiopeia A (Cas A) offers a unique opportunity to study supernova (SN) explosion dynamics and remnant interactions with the circumstellar medium (CSM). Recent observations with the James Webb Space Telescope have unveiled an enigmatic structure within the remnant, termed “Green Monster” (GM), whose properties indicate a CSM origin. Aims.Our goal is to investigate the properties of the GM and uncover the origin of its intriguing pockmarked structure, characterized by nearly circular holes and rings. We aim to examine the role of small-scale ejecta structures in shaping these features through their interaction with a dense circumstellar shell. Methods.We adopted a neutrino-driven SN model to trace the evolution of its explosion from core collapse to the age of the Cas A remnant using high-resolution 3D magnetohydrodynamic simulations. Besides other processes, the simulations include self-consistent calculations of radiative losses, accounting for deviations from electron-proton temperature equilibration and ionization equilibrium, as well as the ejecta composition derived from the SN. Results.The observed GM morphology can be reproduced by the interaction of dense ejecta clumps and fingers with an asymmetric, forward-shocked circumstellar shell. The clumps and fingers form by hydrodynamic instabilities growing at the interface between SN ejecta and shocked CSM. Radiative cooling accounting for effects of non-equilibrium of ionization enhances the ejecta fragmentation, forming dense knots and thin filamentary structures that penetrate the shell, producing a network of holes and rings with properties similar to those observed. Conclusions.The origin of the holes and rings in the GM can be attributed to the interaction of ejecta with a shocked circumstellar shell. By constraining the timing of this interaction and analyzing the properties of these structures, we provide a distinction of this scenario from an alternative hypothesis, which attributes these features to fast-moving ejecta knots penetrating the shell ahead of the forward shock. 
    more » « less