skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-energy Explosions in a Gravitational Field: Implications for Sub-energetic Supernovae and Fast X-Ray Transients
Abstract Observations and theory suggest that core-collapse supernovae can span a range of explosion energies, and when sub-energetic the shockwave initiating the explosion can decelerate to speeds comparable to the escape speed of the progenitor. In these cases, gravity will complicate the explosion hydrodynamics and conceivably cause the shock to stall at large radii within the progenitor star. To understand these unique properties of weak explosions, we develop a perturbative approach for modeling the propagation of an initially strong shock into a time-steady, infalling medium in the gravitational field of a compact object. This method writes the shock position and the post-shock velocity, density, and pressure as series solutions in the (time-dependent) ratio of the freefall speed to the shock speed, and predicts that the shock stalls within the progenitor if the explosion energy is below a critical value. We show that our model agrees very well with hydrodynamic simulations, and accurately predicts (for example) the time-dependent shock position and velocity and the radius at which the shock stalls. Our results have implications for black hole formation and the newly detected class of fast X-ray transients (FXTs). In particular, we propose that a “phantom shock breakout”—where the outer edge of the star falls through a stalled shock—can yield a burst of X-rays without a subsequent optical/UV signature, similar to FXTs. This model predicts the rise time of the X-ray burst,td, and the mean photon energy,kT, are anticorrelated, approximately as T t d 5 / 8 more » « less
Award ID(s):
2006684
PAR ID:
10559503
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present comprehensive optical observations of SN 2021gmj, a Type II supernova (SN II) discovered within a day of explosion by the Distance Less Than 40 Mpc survey. Follow-up observations show that SN 2021gmj is a low-luminosity SN II (LL SN II), with a peak magnitudeMV= −15.45 and an Feiivelocity of ∼1800 km s−1at 50 days past explosion. Using the expanding photosphere method, we derive a distance of 17.8 0.4 + 0.6 Mpc. From the tail of the light curve we obtain a radioactive nickel mass of M 56 Ni = 0.014 ± 0.001M. The presence of circumstellar material (CSM) is suggested by the early-time light curve, early spectra, and high-velocity Hαin absorption. Analytical shock-cooling models of the light curve cannot reproduce the fast rise, supporting the idea that the early-time emission is partially powered by the interaction of the SN ejecta and CSM. The inferred low CSM mass of 0.025Min our hydrodynamic-modeling light-curve analysis is also consistent with our spectroscopy. We observe a broad feature near 4600 Å, which may be high-ionization lines of C, N, or/and Heii. This feature is reproduced by radiation-hydrodynamic simulations of red supergiants with extended atmospheres. Several LL SNe II show similar spectral features, implying that high-density material around the progenitor may be common among them. 
    more » « less
  2. A<sc>bstract</sc> Differential measurements of Higgs boson production in theτ-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF),VHand$$ t\overline{t}H $$ t t ¯ H associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb−1of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: theSimplified Template Cross-Section(STXS) approach and anUnfolded Fiducial Differentialmeasurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson’s transverse momentum ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ p T H ), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets (mjj). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction formjj> 1.5 TeV and$$ {p}_{\textrm{T}}^{\textrm{H}} $$ p T H > 200 GeV ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ p T H < 200 GeV) is$$ {1.29}_{-0.34}^{+0.39} $$ 1.29 0.34 + 0.39 ($$ {0.12}_{-0.33}^{+0.34} $$ 0.12 0.33 + 0.34 ). This is the first VBF measurement for the higher-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ p T H criteria, and the most precise for the lower-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ p T H criteria. Thefiducialcross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed ∆ϕjjbetween the two leading jets. The measurements have a precision of 30%–50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient$$ {c}_{H\overset{\sim }{W}} $$ c H W ~
    more » « less
  3. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  4. Abstract Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula$${A}_{x}{A}_{1-x}^{\text{'}}{B}_{y}{B}_{1-y}^{\text{'}}{O}_{3}$$ A x A 1 x ' B y B 1 y ' O 3 ) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed$${A}_{x}{A}_{1-x}^{{\prime} }{B}_{y}{B}_{1-y}^{{\prime} }{O}_{3}$$ A x A 1 x B y B 1 y O 3 compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$ A 0.5 A 0.5 B 0.5 B 0.5 O 3 compositions were generated in theab+aGlazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$ A 0.5 A 0.5 B 0.5 B 0.5 O 3 perovskite structures using MP-compatible DFT calculations. 
    more » « less
  5. Abstract General relativistic magnetohydrodynamic (GRMHD) simulations of black hole tilted disks—where the angular momentum of the accretion flow at large distances is misaligned with respect to the black hole spin—commonly display standing shocks within a few to tens of gravitational radii from the black hole. In GRMHD simulations of geometrically thick, optically thin accretion flows, applicable to low-luminosity sources like Sgr A* and M87*, the shocks have transrelativistic speed, moderate plasma beta (the ratio of ion thermal pressure to magnetic pressure isβpi1∼ 1–8), and low sonic Mach number (the ratio of shock speed to sound speed isMs∼ 1–6). We study such shocks with 2D particle-in-cell simulations, and we quantify the efficiency and mechanisms of electron heating for the special case of preshock magnetic fields perpendicular to the shock direction of propagation. We find that the postshock electron temperatureTe2exceeds the adiabatic expectationTe2,adby an amount T e 2 / T e 2 , ad 1 0.0016 M s 3.6 , nearly independent of the plasma beta and of the preshock electron-to-ion temperature ratioTe1/Ti1, which we vary from 0.1 to unity. We investigate the heating physics forMs∼ 5–6 and find that electron superadiabatic heating is governed by magnetic pumping atTe1/Ti1= 1, whereas heating byB-parallel electric fields (i.e., parallel to the local magnetic field) dominates atTe1/Ti1= 0.1. Our results provide physically motivated subgrid prescriptions for electron heating at the collisionless shocks seen in GRMHD simulations of black hole accretion flows. 
    more » « less