Abstract BackgroundMammalian gonadal sex is determined by the presence or absence of a Y chromosome and the subsequent production of sex hormones contributes to secondary sexual differentiation. However, sex chromosome-linked genes encoding dosage-sensitive transcription and epigenetic factors are expressed well before gonad formation and have the potential to establish sex-biased expression that persists beyond the appearance of gonadal hormones. Here, we apply a comparative bioinformatics analysis on a pair of published single-cell datasets from mouse and human during very early embryogenesis—from two-cell to pre-implantation stages—to characterize sex-specific signals and to assess the degree of conservation among early acting sex-specific genes and pathways. ResultsClustering and regression analyses of gene expression across samples reveal that sex initially plays a significant role in overall gene expression patterns at the earliest stages of embryogenesis which potentially may be the byproduct of signals from male and female gametes during fertilization. Although these transcriptional sex effects rapidly diminish, sex-biased genes appear to form sex-specific protein–protein interaction networks across pre-implantation stages in both mammals providing evidence that sex-biased expression of epigenetic enzymes may establish sex-specific patterns that persist beyond pre-implantation. Non-negative matrix factorization (NMF) on male and female transcriptomes generated clusters of genes with similar expression patterns across sex and developmental stages, including post-fertilization, epigenetic, and pre-implantation ontologies conserved between mouse and human. While the fraction of sex-differentially expressed genes (sexDEGs) in early embryonic stages is similar and functional ontologies are conserved, the genes involved are generally different in mouse and human. ConclusionsThis comparative study uncovers much earlier than expected sex-specific signals in mouse and human embryos that pre-date hormonal signaling from the gonads. These early signals are diverged with respect to orthologs yet conserved in terms of function with important implications in the use of genetic models for sex-specific disease.
more »
« less
This content will become publicly available on November 22, 2025
Spatiotemporal characterization of cyclooxygenase pathway enzymes during vertebrate embryonic development
Vertebrate development is regulated by several complex well-characterized morphogen signaling pathways, transcription factors, and structural proteins, but less is known about the enzymatic pathways that regulate early development. We have identified that factors from the inflammation-mediating cyclooxygenase (COX) signaling pathway are expressed at early stages of development in avian embryos. Using Gallus gallus (chicken) as a research model, we characterized the spatiotemporal expression of a subset of genes and proteins in the COX pathway during early neural development stages. Specifically, here we show expression patterns of COX-1, COX-2, and microsomal prostaglandin E synthase-2 (mPGES-2) as well as the genes encoding these enzymes (PTGS1, PTGS2, and PTGES-2). Unique expression patterns of individual players within the COX pathway suggest that they may play non-canonical/non-traditional roles in the embryo compared to their roles in the adult. Future work should examine the function of the COX pathway in tissue specification and morphogenesis and determine if these expression patterns are conserved across species.
more »
« less
- Award ID(s):
- 2143217
- PAR ID:
- 10559537
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Developmental Biology
- Volume:
- 518
- Issue:
- C
- ISSN:
- 0012-1606
- Page Range / eLocation ID:
- 61 to 70
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundWnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. ResultsWe analyzed published genomes for two representatives of Tardigrada,Hypsibius exemplarisandRamazzottius varieornatus. We identified single orthologs ofWnt4,Wnt5,Wnt9,Wnt11, andWntA, as well as twoWnt16paralogs in both tardigrade genomes. We only found aWnt2ortholog inH. exemplaris. We could not identify orthologs ofWnt1,Wnt6,Wnt7,Wnt8, orWnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog ofarrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog ofarrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes inH. exemplarisduring developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes inH. exemplarisbesides one of theWnt16paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs inH. exemplaris, rather than in broadly overlapping patterns. ConclusionsOur results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lostWnt1,Wnt6,Wnt7,Wnt8, andWnt10, along witharrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.more » « less
-
Abstract During the early stages of limb and fin regeneration in aquatic vertebrates (i.e., fishes and amphibians), blastema undergo transcriptional rewiring of innate immune signaling pathways to promote immune cell recruitment. In mammals, a fundamental component of innate immune signaling is the cytosolic DNA sensing pathway, cGAS‐STING. However, to what extent the cGAS‐STING pathway influences regeneration in aquatic anamniotes is unknown. In jawed vertebrates, negative regulation of cGAS‐STING activity is accomplished by suppressors of cytosolic DNA such as Trex1, Pml, and PML‐like exon 9 (Plex9) exonucleases. Here, we examine the expression of these suppressors of cGAS‐STING, as well as inflammatory genes and cGAS activity during caudal fin and limb regeneration using the spotted gar (Lepisosteus oculatus) and axolotl (Ambystoma mexicanum) model species, and during age‐related senescence in zebrafish (Danio rerio). In the regenerative blastema of wounded gar and axolotl, we observe increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We also observed a decrease in axolotlTrex1and garpmlexpression during the early phases of wound healing which correlates with a dramatic increase in cGAS activity. In contrast, theplex9.1gene does not change in expression during wound healing in gar. However, we observed decreased expression ofplex9.1in the senescing cardiac tissue of aged zebrafish, where 2′3′‐cGAMP levels are elevated. Finally, we demonstrate a similar pattern ofTrex1,pml, andplex9.1gene regulation across species in response to exogenous 2′3′‐cGAMP. Thus, during the early stages of limb‐fin regeneration, Pml, Trex1, and Plex9.1 exonucleases are downregulated, presumably to allow an evolutionarily ancient cGAS‐STING activity to promote inflammation and the recruitment of immune cells.more » « less
-
Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.more » « less
-
Calcium waves and oscillation during embryonic development are key elements in the intricate process of molluscan shell formation. However, understanding calcium dynamics in the early embryonic shell formation in gastropod development is still insufficient. The present study explores the role of calcium flux in early shell formation within the embryo of gastropod Biomphalaria glabrata. We hypothesized that the role of calcium is not only in providing a critical element for shell formation but also in serving as a signaling molecule for the genetic regulation of calcification. The calcium flux was visualized using the Fura-2 and Fluo-4 calcium indicators through the trochophore (72 hours) and veliger (120 hours) stages of B. glabrata development. The dynamics of calcium signals were correlated to the rapid transition from motile trochophore to veliger, marked by cilia-mediated movement and premature shell and foot development. According to our observation, the intracellular calcium signals were attenuated from 72 to 120 hours of embryo development. The expression profiles of genes encoding calmodulin and related protein kinase following the calcium flux in embryos suggested a critical role of the calcium-binding proteins in the early shell development of gastropods. Although the embryonic calcium dynamics and the related signaling pathway of shell formation are under further observation and analysis, the role of calcium in the singling pathway of shell formation has been demonstrated by this preliminary study.more » « less