skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microeukaryotes Associated with Freshwater Mussels in Rivers of the Southeastern United States
Microeukaryotes are a diverse and often overlooked group of microbes that are important in food webs and other ecological linkages. Little is known about microeukaryotes associated with aquatic invertebrates, although filter feeders such as mussels are likely to take in and potentially retain microeukaryotes in their gut while feeding. Microeukaryotes such as apicomplexans have been reported in marine mussel species, but no studies have examined the presence of these microorganisms in freshwater mussels or how they relate to mussel host species or environmental conditions. In this study, microbial community DNA was extracted from the gut tissue of over 300 freshwater mussels, representing 22 species collected from rivers in the southeastern USA. Microeukaryote DNA was detected using PCR amplification, followed by the sequencing of positive amplicons. Microeukaryotes were found in 167 individual mussels (53%) of those tested. Amplicons included dinoflagellates/algae that differed between mussel species and are likely food sources that were distinct from those found in water and sediment samples analyzed concurrently. A total of 5% of the positive amplicons were non-photosynthetic alveolates that could represent parasitic microeukaryotes. Understanding the distribution of microeukaryotes in the freshwater mussel gut microbiome could further our understanding of the ongoing decline of mussel populations.  more » « less
Award ID(s):
1831531
PAR ID:
10559546
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI (Microorganisms)
Date Published:
Journal Name:
Microorganisms
Volume:
12
Issue:
9
ISSN:
2076-2607
Page Range / eLocation ID:
1835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freshwater mussels are important indicators of the overall health of their environment but have suffered declines that have been attributed to factors such as habitat degradation, a loss of fish hosts, climate change, and excessive nutrient inputs. The loss of mussel biodiversity can negatively impact freshwater ecosystems such that understanding the mussel’s gut microbiome has been identified as a priority topic for developing conservation strategies. In this study, we determine whether ethanol-stored specimens of freshwater mussels can yield representative information about their gut microbiomes such that changes in the microbiome through time could potentially be determined from museum mussel collections. A short-term preservation experiment using the invasive clam Corbicula fluminea was used to validate the use of ethanol as a method for storing the bivalve microbiome, and the gut microbiomes of nine native mussel species that had been preserved in ethanol for between 2 and 9 years were assessed. We show that ethanol preservation is a valid storage method for bivalve specimens in terms of maintaining an effective sequencing depth and the richness of their gut bacterial assemblages and provide further insight into the gut microbiomes of the invasive clam C. fluminea and nine species of native mussels. From this, we identify a “core” genus of bacteria (Romboutsia) that is potentially common to all freshwater bivalve species studied. These findings support the potential use of ethanol-preserved museum specimens to examine patterns in the gut microbiomes of freshwater mussels over long periods. 
    more » « less
  2. Abstract The gut microbiome is influenced by host species and the environment, but how the environment influences the microbiome of animals introduced into a new ecosystem has rarely been investigated. Freshwater mussels are aquatic fauna, with some threatened or endangered species propagated in hatcheries and introduced into natural systems as part of conservation efforts. The effects of the environment on the freshwater mussel gut microbiome were assessed for two hatchery-propagated species (Lampsilis ovata, Lampsilis ornata) introduced into rivers within their natural range. Mussels were placed in rivers for 8 weeks, after which one subset was collected, another subset remained in that river, and a third subset was reciprocally transplanted to another river in the same river basin for a further 8 weeks. Gut microbiome composition and diversity were characterized for all mussels. After the initial 8 weeks, mussels showed increased gut bacterial species richness and distinct community composition compared to hatchery mussels, but gut microbiome diversity then decreased for mussels that remained in the same river for all 16 weeks. The gut bacterial community of mussels transplanted between rivers shifted to resemble that of mussels placed initially into the recipient river and that remained there for the whole study. All mussels showed high proportions of Firmicutes in their gut microbiome after 8 weeks, suggesting an essential role of this phylum in the gut of Lampsilis species. These findings show that the mussel gut microbiome shifts in response to new environments and provide insights into conservation strategies that involve species reintroductions. 
    more » « less
  3. null (Ed.)
    Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity. 
    more » « less
  4. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less
  5. The use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present. Multispecies eDNA approaches may also be more challenging where freshwater mussel populations are most diverse due to ongoing and significant taxonomic restructuring that has been further complicated by molecular phylogenies using mitochondrial genes. For this study, we developed a microfluidic metabarcoding array that targets a wide range of species, from invertebrates to fishes, with an emphasis on detecting unionid mussels known to be present in the Sipsey River, Alabama. We compared mussel species diversity across six sites with well-studied mussel assemblages using eDNA surveys and traditional quadrat surveys in 2016. We examined how factors such as mussel population density, biomass and location in the river substrate impacted our ability to detect certain species; and investigated unexpected eDNA detections through phylogenetic analysis. Our eDNA results for fish and mussel species were broadly consistent with the data from traditional electrofishing and quadrat-based field surveys, although both community eDNA and conventional sampling detected species unique to that method. Our phylogenetic analysis agreed with other studies that treat Pleurobema decisum and P. chattanoogaense as synonymous species; however, they are still listed as unique species in molecular databases which complicates their identity in a metabarcoding assay. We also found that Fusconaia flava and F. cerina are indistinguishable from one another using a portion of the NADH dehydrogenase Subunit 1 (ND1) marker, which may warrant further investigation into whether or not they are synonymous. Our results show that many factors impacted our ability to detect and correctly identify Unionidae mussel species. Here we describe the obstacles we faced, including the murky phylogeny of Unionidae mussels and turbid river conditions, and our development of a potentially impactful freshwater mussel monitoring eDNA assay. 
    more » « less