skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Modeling of Proactive, Reactive, and Attentional Dynamics in Cognitive Control
We developed a novel Proactive Reactive and Attentional Dynamics (PRAD) computational model designed to dissect the latent mechanisms of inhibitory control in human cognition. Leveraging data from over 7,500 participants in the NIH Adolescent Brain Cognitive Development study, we demonstrate that PRAD surpasses traditional models by integrating proactive, reactive, and attentional components of inhibitory control. Employing a hierarchical Bayesian framework, PRAD offers a granular view of the dynamics underpinning action execution and inhibition, provides debiased estimates of stop-signal reaction times, and elucidates individual and temporal variability in cognitive control processes. Our findings reveal significant intra-individual variability, challenging conventional assumptions of random variability across trials. By addressing nonergodicity and systematically accounting for the multi-componential nature of cognitive control, PRAD advances our understanding of the cognitive mechanisms driving individual differences in cognitive control and provides a sophisticated computational framework for dissecting dynamic cognitive processes across diverse populations.  more » « less
Award ID(s):
2024856
PAR ID:
10559636
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonergodicity and Simpson’s paradox present significant, yet underappreciated challenges in neuroscience. Leveraging brain imaging and behavioral data from over 4,000 children and a Bayesian computational model of cognitive dynamics, we investigated brain-behavior relationships underlying cognitive control at both between-subjects and within-subjects levels. Strikingly, we observed a reversal of associations of inhibitory control brain activations with dynamic behavioral measures when comparing between-subjects and within-subjects analyses, revealing the nonergodic nature of these processes. This nonergodicity was pervasive throughout the brain but most pronounced in the salience network. Additionally, within-subjects analysis uncovered dissociated brain representations of reactive and proactive control processes, as well as distinct brain-behavior associations for individuals who adaptively versus maladaptively regulated cognitive control. Our findings offer insights into dynamic neural mechanisms of cognitive control during a critical developmental period. This work highlights the importance of embracing nonergodicity in human neuroscience, with implications for both theoretical understanding and applications to AI and psychopathology. 
    more » « less
  2. Gutkin, Boris S. (Ed.)
    Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem. 
    more » « less
  3. Mendez, G.; Matsuda, N.; Santos, O. C.; Dimitrova, V. (Ed.)
    The dual mechanisms of control framework describes two modes of goal-directed behavior: proactive control (goal maintenance) and reactive control (goal activation on task demands). Although these mechanisms are relevant to learner behaviors during interaction with intelligent tutoring systems (ITS), their relation to ITSs is under-researched. We propose a manipulation to induce proactive or reactive control during interaction with an online tutoring system. We present two experiments where students solved problems using either proactive or reactive control. Study 1 validates the manipulation by investigating behavioral measures that reflect usage of the intended strategy and assesses whether either mode impacted learning. Study 2 investigates if alternating between control modes during problem solving affects student performance. 
    more » « less
  4. Abstract It has been debated whether salient distractors in visual search can be proactively suppressed to completely prevent attentional capture, as the occurrence of proactive suppression implies that the initial shift of attention is not entirely driven by physical salience. While the presence of a Pd component in the EEG (associated with suppression) without a preceding N2pc component (associated with selection) has been used as evidence for proactive suppression, the link between these ERPs and the underlying mechanisms is not always clear. This is exemplified in two recent articles that observed the same waveform pattern, where an early Pd-like component flipped to a N2pc-like component, but provided vastly different interpretations (Drisdelle, B. L., & Eimer, E. PD components and distractor inhibition in visual search: New evidence for the signal suppression hypothesis. Psychophysiology, 58, e13898, 2021; Kerzel, D., & Burra, N. Capture by context elements, not attentional suppression of distractors, explains the PD with small search displays. Journal of Cognitive Neuroscience, 32, 1170–1183, 2020). Using RAGNAROC (Wyble et al., Understanding visual attention with RAGNAROC: A Reflexive Attention Gradient through Neural AttRactOr Competition. Psychological Review, 127, 1163–1198, 2020), a computational model of reflexive attention, we successfully simulated this ERP pattern with minimal changes to its existing architecture, providing a parsimonious and mechanistic explanation for this flip in the EEG that is unique from both of the previous interpretations. Our account supports the occurrence of proactive suppression and demonstrates the benefits of incorporating computational modeling into theory building. 
    more » « less
  5. Neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that mnemonic internal states may emerge from inter-areal reverberation, even in a regime where none of the isolated areas is capable of generating self-sustained activity. The mnemonic activity pattern along the cortical hierarchy indicates a transition in space, separating areas engaged in working memory and those which do not. A host of spatially distinct attractor states is found, potentially subserving various internal processes. The model yields testable predictions, including the idea of counterstream inhibitory bias, the role of prefrontal areas in controlling distributed attractors, and the resilience of distributed activity to lesions or inactivation. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes. 
    more » « less